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FOREWORD 

Recently the issue of early childhood mathematics has come to the fore and with it 
the importance of teaching geometrical concepts and reasoning from a young age. 
Research has not only demonstrated that young children can learn mathematics but 
that children’s mathematics knowledge and reasoning should be actively promoted 
from an early age (Clements & Sarama, 2007). Specifically, geometry is not only 
in and of itself a key domain but it may also support the learning of other 
mathematical topics, such as number and patterns. Developing geometrical 
reasoning, progressing from visual to descriptive and analytical reasoning may go 
hand in hand with developing the ability to form well defined concepts in other 
domains as well. Unfortunately, young children with little mathematics knowledge 
tend to fall further behind their peers each year. Compounding this problem, early 
knowledge of mathematics is often seen as a predictor of later school success 
(Jimerson, Egelnad, & Teo, 1999). 

With this in mind, it is not surprising to find increased calls for improving early 
childhood mathematics education, including the learning of geometrical concepts. 
At a recent 2009 Conference of European Research in Mathematics Education, a 
new working group in Early Years Mathematics was established in response to 
increased calls for research regarding mathematics learning and mathematics 
teacher education in the early years (ages 3-8). A joint position paper published in 
the United States by the National Association for the Education of Young Children 
(NAEYC) and the National Council for Teachers of Mathematics (NCTM) stated 
that “high quality, challenging, and accessible mathematics education for 3- to 6-
year old children is a vital foundation for future mathematics learning” (NAEYC & 
NCTM, 2002, p. 1). Further evidence of concern for preschool mathematics 
education may be seen in the rise of national curricula in various countries which 
now make specific and sometimes mandatory recommendations for including 
mathematics and geometry as part of the preschool program. For example, in 
England, the Statutory Framework for the Early Years Foundation Stage (2008) 
states precise goals related to learning geometrical concepts during these years. In 
the US, the Curriculum Focal Points for Prekindergarten through Grade 8 
Mathematics (NCTM, 2006) specifically mention that children should be able to 
identify and describe a variety of two- and three-dimensional shapes presented in a 
variety of ways and use geometrical concepts when recognizing and working on 
simple sequential patterns or when analyzing a data set. Yet, geometry and spatial 
thinking are often ignored or minimized in early education (Sarama & Clements, 
2009). Thus, there is an urgent need for the early childhood education community 
to improve geometry education in preschool. 

This book is devoted entirely to the learning and teaching of geometry in 
preschool. The first part of the book is dedicated to children’s geometrical 
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thinking; the second part focuses on geometrical tasks; the third part focuses on 
teaching geometry to young children. Each of the three parts is structured in a 
similar manner, beginning with general theory and research, continuing with 
specific examples related to those theories, and moving on to elements of actual 
practice. 

Part one is a study of preschool children’s conceptualization of geometrical 
figures. As such, it begins with a review of theories and research related to concept 
formation in geometry. It then discusses more specifically the building of concept 
images in line with concept definitions, and how children’s knowledge may be 
both assessed and promoted. It also discusses dilemmas that arise in the process. 
The second part of the book is devoted to geometrical tasks. It reviews the general 
structure and different elements of mathematical tasks and moves on to specifically 
discuss aspects of geometrical task design and implementation with young 
children. The second part also offers a review of several geometrical tasks 
implemented with young children and their role in developing and assessing 
geometrical reasoning. The third part of this book focuses on teaching geometry to 
young children. Taking into consideration that preschool children may attend a 
variety of day-care facilities or may be entirely home schooled, this part begins 
with theories and research related to the knowledge necessary for anyone who 
wishes to teach geometry to young children. It then continues with how this 
knowledge may be promoted, through, for example, professional development, and 
how this knowledge may then be put into practice. It also offers suggestions for 
tasks which may be implemented during professional development. 

For whom did we write this book? First of all, we believe that this book will 
contribute greatly to preschool caregivers and teachers. Often, these practitioners 
receive little or no preparation for teaching mathematics to young children 
(Ginsburg, Lee, & Boyd, 2008). Yet, as we mentioned above, according to many 
national guidelines and curricula, they are responsible for teaching geometry in 
their classes. This book offers both a theoretical review as well as practical 
suggestions for how the teacher may promote geometrical learning in preschool. 
We also believe that this book will contribute to teacher educators, responsible for 
the professional development of both prospective and practicing preschool 
teachers. For the research community, each part of this book not only offers a 
review of previous research related to that section, but also raises many questions 
which point to the need for additional research. In general, any person who has an 
interest in the mathematics education of preschool children, be it parents, 
caregivers, formal, and informal educators, will find this book relevant. As you 
read this book, you may view it as an odyssey, an intellectual wandering and 
eventful journey, of learning and teaching geometry with preschool children. It is 
not a book to be read through in one sitting. It is a book to linger over, to take the 
time and contemplate the different examples and situations illustrated throughout. 
We hope that you will also find this book an eventful journey. 

 
 



PART 1 

STUDYING PRESCHOOL CHILDREN’S 
DEVELOPMENT OF GEOMETRICAL CONCEPTS 

This book is concerned with geometry in the preschool. In order to begin 
discussing how geometry might be introduced to young children and the kinds of 
tasks and activities which might promote geometrical thinking, it is necessary to 
first review how children develop geometrical thinking. The first chapter is 
dedicated to studying preschool children’s development of geometrical concepts. 
We begin with an overview of theories related to how children acquire geometrical 
concepts and research concerned with developing geometrical thinking.  We then 
focus on two-dimensional figures, examining separately the nuances and 
challenges associated with different shapes. Finally, we discuss three-dimensional 
figures. 

The second and third chapters discuss how preschool children may come to 
build concept images in line with concept definitions. 
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CHAPTER 1 

THEORIES AND RESEARCH RELATED TO CONCEPT 
FORMATION IN GEOMETRY 

In order for us to discuss with you, the reader, how geometrical concepts are 
developed, we need to establish a common language and a common background. 
This chapter provides terminology and theories on which the other sections and 
chapters of this book rest. It begins by presenting theories related to concept 
formation in general, proceeds to theories related to concept formation in 
mathematics, and finally discusses concept formation in geometry. But first, what 
do we mean when we refer to a ‘concept’? “Cognition does not start with concepts, 
but the other way around: concepts are the result of cognitive processes” 
(Freudenthal, 1991, p. 18). Concepts arise from the manipulation of mental objects. 
It may be seen as the end-product of becoming aware of similarities among our 
experiences and classifying these experiences based on their similarities. In other 
words, it is the end-product of abstraction (Skemp, 1971).  

1.1 THE NATURE OF CONCEPTS 

How are concepts formed within the mind of a person? Take, for example, the 
concepts of ‘dog’ and ‘cat’. Both a dog and a cat are four-legged animals. So how 
does a child learn to differentiate between them?   

Concept formation is related to categorization. Think about a bird. Do you have 
a picture in your mind? Now think of another example of a bird. Can you think of 
yet another example? Within cognitive psychology, several theories attempt to 
describe processes of categorization and of concept formation. Two major theories 
are the classical view and the probabilistic (or prototype) view. According to the 
classical view, concepts and categories are represented by a set of defining 
features. For example, birds have defining features such as being bipeds and 
having wings. Instances of a concept, also called exemplars or examples, share 
common properties that are necessary and sufficient conditions for defining the 
concept (Klausmeier & Sipple, 1980; Smith, Shoben, & Rips, 1974; Smith & 
Medin, 1981). The features of a new stimulus would then be judged against the 
features of a known category in order to determine if it is an example of that 
category. What examples of birds did you come up with? Did you think of a 
chicken? Is a chicken a bird? Is it a biped and does it have wings? Yes. It is a biped 
and it does have wings. Therefore, a chicken is a bird. But it doesn’t perch in trees, 
you may exclaim. Perching in trees might be considered a characteristic feature but 
not a defining feature. In other words, some birds may perch in trees but it is not 
necessary for the chicken to perch in trees in order for it to be an example of a bird.  
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The classical view assumes clear-cut boundaries by which category membership 
can be determined. But this is not always the case. For example, is your living 
room carpet part of the furniture of that room? Some might answer yes and others 
might answer no. On the one hand, it may be considered part of the decorative 
furnishings of the living room. On the other hand, it is not intended to sit on, hold 
objects, or store things. The probabilistic view takes into account characteristic 
features and not just defining features. In other words, if an example has enough 
characteristic features, or if the characteristic features it has are the more 
acceptable and known features, then it can still be considered an example of that 
concept.  

Because concepts are represented by a set of features which are characteristic or 
probable of examples, members of a category may be graded, with some instances 
considered to be “better” examples than others. Think back again to the examples 
of birds which came to your mind previously. You probably did not think of a 
chicken although we already established that a chicken is technically a bird. Does 
your bird have a particular color? A typical size? The features of that bird you 
envision are not defining. They are characteristic. The probabilistic theory also 
proposes the existence of ideal examples, called prototypes, which are often 
acquired first and serve as a basis for comparison when categorizing additional 
examples and nonexamples (Attneave, 1957; Posner & Keele, 1968; Reed, 1972; 
Rosch, 1973).  

1.2 MATHEMATICAL CONCEPTS 

Developing mathematical concepts is not unlike developing other concepts. Within 
mathematics education, both the classical and prototype views are often employed 
when addressing the formation of mathematical concepts. In line with the classical 
view, mathematical concepts generally have precise definitions ensuring 
mathematical coherence and providing the foundation for building mathematical 
theories. In mathematics, examples are absolute, determined by the canons of 
mathematical correctness. However, these same mathematical concepts may have 
been encountered by the individual in other forms prior to being formally defined. 
Even after they are defined, mathematical concepts often invoke images both at the 
personal as well as the collective level. Thus, for learners, some instances of a 
concept may be better examples than others. This is in line with the probabilistic 
view.  

Within mathematics education, we may differentiate between a formal concept 
definition, a personal concept definition, and a concept image. A concept definition 
refers to “a form of words used to specify that concept” (Tall & Vinner, 1981, p. 
152). A formal concept definition is a definition accepted by the mathematical 
community whereas a personal concept definition may be formed by the individual 
and change with time and circumstance. A personal concept definition may not 
obey the normative rules of mathematical definitions and may even be incorrect. 
The term concept image is used to describe “the total cognitive structure that is 
associated with the concept, which includes all the mental pictures and associated 
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properties and processes” (Tall & Vinner, 1981, p. 152). Because the concept 
image actually contains a conglomerate of ideas, some of these ideas may coincide 
with the definition while others may not. For example, a function may be formally 
defined as a correspondence between two sets which assigns to each element in the 
first set exactly one element in the second set. Yet, students may claim that a 
function is a rule of correspondence (Vinner, 1991). This image does not contradict 
the definition. However, it is limited and eliminates the possibility of an arbitrary 
correspondence. At other times, the concept image may include images which are 
inappropriate and contradict the concept definition. This is discussed in more detail 
when we focus later on geometry. 

When a problem is posed to an individual, there are several cognitive paths that 
may be taken which take into consideration both the concept image and concept 
definition. At times, although the individual may have been presented with the 
definition, this particular path may be bypassed. Consider, for example, the 
question of whether zero is an even number, an odd number, or neither even nor 
odd. In one study, two sixth grade students claimed that zero was neither even nor 
odd (Levenson, Tsamir, & Tirosh, 2007). Both students knew the definition of 
even numbers as being divisible by two. Yet, one student’s concept image of even 
numbers included being “built from twos” and she could not see how zero was 
built from twos. The second student’s concept image of zero was that of it 
representing nothing and therefore could not be divided by two. Both students had 
a correct concept definition of even numbers. They had both previously claimed 
that 14 was an even number because it is divisible by two. In other words, they 
knew that even numbers are divisible by two. Yet, when considering zero, both 
students responded at first intuitively, according to their concept images, and not 
according to the acceptable concept definition. According to Vinner (1991), an 
intuitive response is one where “everyday life thought habits take over and the 
respondent is unaware of the need to consult the formal definition” (p. 73). 
Intuitive knowledge is both self-evident and immediate and is often derived from 
experience (Fischbein, 1987). As such it does not always promote the logical and 
deductive reasoning necessary for developing formal mathematical concepts. 
“Sometimes, the intuitive background manipulates and hinders the formal 
interpretation” (Fischbein, 1993a, p. 14). Recently, Stavy and Babai (2010) 
explored how intuitive processing of irrelevant quantities interferes with 
formal/logical reasoning in geometry. In their study, they investigated how adults 
compared the areas and perimeters of shapes in two conditions: (1) congruent 
conditions – where the response is in line with the intuition as the area of one shape 
is larger than the second shape and so its perimeter is also larger than the second 
shape and (2) incongruent conditions – where the correct response runs counter to 
the intuition as the area of one shape is larger than the second shape but its 
perimeter is not (see Figures 1a and 1b). 
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  Figures 1a. Congruent condition                  Figure 1b. Incongruent condition 

Brain imaging suggested that executive control mechanisms might have a role in 
overcoming intuitive interference. They also point to the importance of noticing 
that although two tasks might be mathematically equivalent, they could, 
psychologically, be very different, i.e., the comparison of perimeter of an 
incongruent complex task is more demanding than the corresponding simple task. 

The distinction in mathematics education research between intuitive thinking 
and behavior and analytical thinking and behavior may be complemented by 
considering general cognitive behaviors such as the dual-process theory of two 
parallel systems, System 1 (S1) and System 2 (S2) (Leron & Hazzan, 2006). S1 
processes are “characterized as being fast, automatic, effortless, unconscious and 
inflexible…can be language-mediated and relate to events not in the here-and-
now” (p. 108). S2 processes are “slow, conscious, effortful and relatively flexible” 
(p. 108). Consider the following mathematics problem presented to university 
students: 

A baseball bat and ball cost together one dollar and 10 cents. The bat costs 
one dollar more than the ball. How much does the ball cost? (Kahneman, 
2002, p. 451) 

Many students initially answered that the ball costs 10 cents. When students 
incorrectly answer a mathematics problem, it may not necessarily be due to lack of 
mathematical knowledge. When analyzing why students wrote an incorrect 
mathematics sentence for a given word problem, Leron and Hazaan (2006) 
concluded that it was not that the students lacked the necessary mathematics 
knowledge. Instead, the fault was most probably due to the general cognitive 
process whereby S1 took over too quickly for S2 to even have a chance. That is, S1 
brought to mind the most easily accessible path which looked more or less correct 
while S2 failed in its role as a critic and monitor. They concluded by referring back 
to Fischbein (1987) in that students have to learn to be aware of the interactions 
between intuitions and the more formal meaning of mathematical concepts. 

How are all the above theories related to young children? Although Tall and 
Vinner (1981) investigated their concept image-concept definition theory within 
the context of advanced mathematical thinking, the interplay between concept 
definition and concept image is part of the process of mathematical concept 
formation for young children as well. Young children learn about and develop 
concepts, including geometrical concepts, before they begin school. As such, their 
concept image is often limited to their immediate surroundings and experiences 
and is based on perceptual similarities of examples, also known as characteristic 
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features (in line with Smith, Shoben, & Rips, 1974). This initial discrimination 
may lead to only partial concept acquisition in that children may consider some 
nonexamples to be examples and yet may consider some examples to be 
nonexamples of the concept. Later on, examples serve as a basis for both 
perceptible and nonperceptible attributes, ultimately leading to a concept based on 
its defining features. When a child has developed the mechanism which will allow 
the correct identification of all examples of a concept, as well as the exclusion of 
all nonexamples, we may conclude that the child has acquired that concept. 

The interplay between the concept image and concept definition plays a major 
role in geometric concept formation (Vinner & Hershkowitz, 1980). In the next 
section we elaborate on this as we consider concept formation in geometry as well 
as theories related to the development of geometrical reasoning.  

1.3 GEOMETRICAL CONCEPT FORMATION AND REASONING 

Before considering concept formation in geometry, let us consider the nature of 
geometrical concepts. Fischbein (1993b) called the geometrical figures, figural 
concepts. In this he wished to convey their dual nature as both figures and 
concepts. Consider the following proof for why the base angles in isosceles triangle 
ABC are equal (see Figure 2a). 

 

                  A                                           A                                            A 

                                Reverse                                   Superimpose 

 

 

              

 

 

 
     B                        C                   C                     B                     B,C               C,B 

  Figure 2a.                                       Figure 2b.                                         Figure 2c. 

Imagine that you detach triangle ABC from itself, reverse it such that AC is on 
the left side and AB is on the right side (see Figure 2b), and superimpose it back 
onto the original one (see Figure 2c). Angle A remains the same; the lengths of AB 
and AC are equal so that the two sides coincide perfectly. The reversed triangle sits 
perfectly on the original triangle. Thus, we may conclude that the two triangle are 
congruent and therefore their corresponding angles are equal, leading to the 
conclusion that the base angles of an isosceles triangle must be equal. This proof 
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takes into consideration both concepts and figures. Lines, points, and angles are 
ideal concepts. It is the image, which is manipulated. Yet, in reality, can we 
actually detach an object from itself? The objects we refer to are concepts. They 
are ideals. However, their intrinsic nature as figures allows us to consider their 
manipulation. Geometrical figures are concepts, abstract ideas derived from formal 
definitions. As such, geometrical entities do not actually exist in reality. As figures 
they have visual images. Images may be manipulated. To summarize, Fischbein 
(1993b) claimed that the figural concepts “reflect spatial properties (shape, 
position, magnitude), and at the same time, possess conceptual qualities – like 
ideality, abstractness, generality, perfection” (p. 143).  

When conceptualizing children’s formation of geometrical concepts, Piaget (e.g. 
1956; 1960) took a cognitive developmental stand. That is, geometrical thought 
develops in stages following an experiential order which does not necessarily 
reflect the historical development of geometry. At the first stage, a child uses 
sensory-motor activities to explore space, constructing representations of 
topological concepts such as interior and exterior, without size or shape. At the 
second stage, the child develops concepts of projective geometry such as a straight 
line or a right angle. At the third and last stage, children discriminate location in 
two- and three-dimensional space succeeding with measurement and higher level 
tasks (Piaget, Inhelder, & Szeminska, 1960). At this stage, the child is ready to 
study notions of Euclidean geometry such as angularity and parallelism. In general, 
Piaget differentiated between topological and Euclidean figures and conceived of 
geometry as the study of space.  

An extension of this view of the child’s development of geometric concepts was 
put forth by van Hiele (1958). According to this view, with the support of 
instruction, students’ geometrical thinking progresses through a hierarchy of five 
levels, eventually leading up to formal deductive reasoning. Consider the rectangle 
below in Figure X and possible responses to the questions: What type of figure is 
this? How do you know? 
 

 

 

 

Figure 3. Rectangle in vertical position. 

Child A: It is a rectangle because it looks like one. 
Child B: It is a rectangle because it has four sides, two long sides and two 
short sides, and the opposite sides are parallel. 
Child C: It is a rectangle because it is a parallelogram with right angles. 
Child D: I can prove it is a rectangle if I know the figure is a parallelogram 
and has one right angle. 
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The first child, according to the van Hiele theory, is at the most basic level 
where students use visual reasoning, taking in the whole shape without considering 
that the shape is made up of separate components. Students at this level can name 
shapes and distinguish between similar looking shapes. The second student is at the 
second level where students begin to notice that different shapes have different 
attributes but the attributes are not perceived as being related. The third child 
notices the relationship between parallelograms and rectangles. This child is at the 
third level where relationships between attributes are perceived. At this level, 
definitions are meaningful but proofs are as yet not understood. The fourth child 
has reached a level of formal deduction, where students may establish theorems 
within an axiomatic system. The fifth level is rigor and formality. Some 
investigators have suggested a pre-recognition level, Level-0, at which level 
students may perceive shapes but only attend to a subset of a shape’s 
characteristics (Clements, Swaminathan, Hannibal, & Sarama, 1999). For example, 
learners may be able to separate triangles from quadrilaterals, noting the difference 
between the number of sides the polygons have, but not be able to distinguish 
between different quadrilaterals. At this level, when asked to sort, for example, 
rectangles from non-rectangles, a student may not be able to correctly sort all the 
figures and will generally claim that some “look like doors” and other not.  

As this book is concerned with young children’s acquisition of geometrical 
concepts, we are mainly concerned with the first three van Hiele levels,  as students 
move from visual reasoning to recognizing attributes and the relationships between 
attributes. In the following sections we elaborate on these stages including different 
factors which may impact on the acquisition of geometrical concepts. 

 Level one: Visual reasoning and naming 

Visual reasoning begins with nonverbal thinking (van Hiele, 1999). Children judge 
figures by their appearances without the words necessary for describing what they 
see. For example, one study found that 5-year old children often identify as 
triangles, triangle-like shapes with curved sides, either convex or concave, similar 
to those shown in Figure 4 (Clements, Swaminathan, Hannibal, & Sarama, 1999).  

 

 

 

Figure 4. Triangle-like figures with convex and concave sides. 

When reviewing the children’s descriptions of circles, triangles, and rectangles, 
only a few children referred to the attributes of these shapes, indicating that most 
children were operating at the first van Hiele level of geometrical thinking. 

Concept formation may also be linked to naming. For infants and very young 
children, the act of naming may serve as a catalyst to form categories (Waxman, 
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1999). In fact, categorization improves greatly when children hear a single 
consistent name for various examples of a category as opposed to hearing different 
names for the different examples (Waxman & Braun, 2005). Interestingly, 
Markman (1989) proposed that when children hear a new name for an object, they 
assume it refers to a whole object and not to its parts. This coincides with the first 
van Hiele level in which children first take the whole shape into consideration 
without regarding its components.  

Studies have also shown that children assume a given object will have one and 
only one name (e.g. Markman & Wachtel, 1988). Thus, children operating at this 
level may reason that a square is not a triangle merely because it is a square and if 
they know the name of this shape to be a square then it cannot be a triangle 
(Tsamir, Tirosh, & Levenson, 2008). For example, when asked if the figure below 
(see Figure 5) is a triangle, Donna, a five-year old child answered, “No. It’s an 
ellipse.”  

 
 
 

 

Figure 5. Is this a triangle? 

For this child, it was enough to know that the figure is an ellipse to exclude the 
possibility of it being a triangle. While in this case, the child’s reasoning led to a 
correct identification, it may also lead to confusion. Believing that all objects have 
one and only one name may contribute to the difficulties children have in accepting 
the hierarchal structure of geometric figures. When asked if the square in Figure 6 
was a rectangle, Benjamin responded, “No, it is not a rectangle. It is a square.” For 
this child, if the figure already has one name, a square, then how can it also be 
called something else? 

 

 

Figure 6. Is this a rectangle? 

Visual reasoning was also discussed by Satlow and NewCombe (1998) who 
investigated children’s identification of four shapes: circles, triangles, rectangles, 
and pentagons. For each shape they presented children with examples and 
nonexamples, which they termed valid and invalid instances. Valid instances were 
further categorized into typical and atypical instances. For example, the regular 
pentagon with horizontal base was considered a typical pentagon. A tall narrow 
pentagon was considered atypical. An open pentagon-like figure was invalid. 
Results indicated that children ages 3-5 rejected more of the atypical figures than 
the invalid figures. However, by the second grade a shift occurred whereby more of 
the children correctly rejected the invalid figures than the atypical figures. 
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Focusing on the specific shapes, children ages 4-5 correctly identified more 
atypical rectangles than atypical triangles and pentagons. Satlow and Newcombe 
suggested that the difference between the shapes may lie in their visual 
characteristics. The rectangle has limited variability of characteristic features. In 
contrast, triangles and pentagons may vary in the degree in their angles providing a 
wider variety of shapes. Symmetry and angle degrees may be considered attributes 
of figures. Some attributes, namely critical attributes, stem from the concept 
definition while others, non-critical attributes, do not. In the next section we 
discuss the difference between critical and non-critical attributes and their 
relationship to geometric reasoning. 

Levels 2 and 3: Critical and non-critical attributes 

At the second level, children discern between the attributes of figures. Attributes 
may be critical or not-critical (Hershkowitz, 1989). In mathematics, critical 
attributes stem from the concept definition. Definitions are apt to contain only 
necessary and sufficient conditions required to identify an example of the concept. 
Other critical attributes may be reasoned out from the definition. Hence, if we 
define a quadrilateral as a “four sided polygon”, we may then reason that the 
quadrilateral is a closed figure that also has four vertices and four angles. The 
critical attributes then include (a) planar figure, (b) closed figure, (c) four sides, (d) 
four vertices, (e) four angles. Non-critical attributes include, for instance, the 
overall size of the figure (large or small), color, and orientation (horizontal base). 
Individuals who base their reasoning on critical attributes may at the very least be 
operating at the second van Hiele level. If the student points out that a figure is a 
quadrilateral because it is a polygon that has four sides and therefore it also has 
four angles and four vertices, then that child may be operating at the third van 
Hiele level. Recall that children operating at the third van Hiele level find 
definitions meaningful and perceive the relationships between attributes. 
Hershkowitz and Vinner (1983) and Hershkowitz (1989) also found that reasoning 
based on critical attributes increases with age. 

While all examples of a concept must contain the entire set of critical attributes 
for that concept, sometimes children pay more attention to the non-critical 
attributes of different examples. For example, would the following figure be 
considered a square? 

 
 
 

 

 

Figure 7. Square rotated 45°. 
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Burger and Shaughnessy (1986) found that although the orientation of a figure is 
a non-critical or irrelevant attribute, 3rd and 5th grade students may exclude the 
above figure from being a square because of its rotation.  

Which of the following would be considered rectangles by children ages 4-6 
years old? 

 
 

 

 

Figure 8. Which is a rectangle? 

Clements, Swaminathan, Hannibal, and Sarama (1999) found some children 
claimed that all three figures are rectangles because they are “long and skinny”. It 
seemed that if the long and skinny quadrilateral had at least one pair of parallel 
sides, children would accept the figure as a rectangle, paying less attention to 
perpendicularity. 

A critical attribute of one figure may be a non-critical attribute of another. For 
instance, the critical attribute of equal measure when considering the four equal 
sides and four equal angles of the square, is a non-critical attribute when 
considering examples of a quadrilateral. In a follow-up study to Clements et al. 
(1999), Hannibal and Clements (2000) identified additional non-critical attributes. 
These included skewness and aspect ratio. For example, triangles, such as the one 
in Figure 9, that lacked symmetry or where the height was not equal to the width 
were not always identified as triangles. Rectangles, such as the one in Figure 9, that 
were too narrow or not narrow enough were also not accepted. 
 
 
 
 
 

 

Figure 9. “Skewed” triangle and a “too narrow” rectangle. 
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Prototypes and concept formation 

Recall that the probabilistic view of concept formation, discussed in the first 
section of this chapter, takes into consideration that some features are more 
characteristic or probable than others and thus some examples are ‘better’ 
examples than others. Ideal examples are called prototypes. Prototypical examples 
may play an important role in children’s conceptual development. Initially, 
children’s concept images consist of mostly prototypical examples. In drawing 
tasks, children most often draw a prototypical example. Hershkowitz (1989) found 
that even when an invented concept is introduced solely by a verbal definition, a 
prototypical shape emerges from students’ drawings. In her study, students age 11-
14 as well as both prospective and practicing elementary school teachers were 
given the following definition: A “bitran” is a geometric shape consisting of two 
triangles having a common vertex. They were then asked to draw two examples of 
this concept. Take a moment to draw an example of a “bitran”. Results indicated 
that over 40% of the students and approxamitely 50% of the teachers drew the 
figure shown in Figure 10. In other words, the verbal definition elicited very 
similar concept images among all participants. 
 
 
 
 
 
 

Figure 10. Draw an example of a “bitran”. 

Clements, Swaminathan, Hannibal, and Sarama (1999) suggest that different 
shapes may have different numbers of prototypes. They reported that the circle and 
square have fewer prototypes than rectangles and triangles. The data also suggested 
that children have a prototype of a rectangle which is long, for the most part 
disregarding orientation. Thus, many young children incorrectly identified a long 
parallelogram as a rectangle. 

Regarding reasoning about shapes, when analyzing the children’s verbal 
responses to identification tasks of various geometric figures and their descriptions 
of those figures, it was found that many children compared the shapes to visual 
prototypes. Using the prototypical triangle as a reasoning tool was demonstrated by 
Martin, Lukong, and Reaves (2007). They found that when kindergarten children 
were given a paper with several drawn figures, various triangles in different 
orientations, along with various non-triangles, and given the task of identifying all 
the triangles on the paper, children were more likely to rotate the paper when 
identifying non-prototypical triangles than when identifying prototypical triangles. 
In addition, when asked to make non-triangles into triangles, more children were 
likely to draw a prototypical triangle on top of the shape given than just “fix” the 
missing or incorrect attribute. For example, when children were told to “fix” a 
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triangle-like shape with concave sides, they tended to draw on top it a prototypical 
triangle (see Figure 11). 
 

  

 

 

 

Figure 11. Prototypical triangle superimposed onto triangle-like figure with 
concave sides.  

Some studies have suggested that over exposure to prototypes may impede the 
growth of fuller concept acquisition. For example, Kellogg (1980) suggested that 
prototypes are formed when certain non-critical attributes of a shape appear 
frequently in examples and students begin to associate these non-critical attributes 
with examples of the shape. Thus, if children mostly see equilateral triangles in an 
‘upright’ position, they may mistakenly believe that having equal length sides is a 
critical attribute of all triangles and that being in an ‘upright’ position is also a 
critical attribute. In such a case, the child may not accept a right triangle or a 
scalene triangle as examples of triangles. Wilson (1986) advocated the use of 
nonexamples in order to lessen the effect of prototypes. For example, if a child is 
presented with many non-triangle figures that have equal sides he may come to 
realize that having equal sides is not a critical attribute of a triangle (see Figure 12). 
By exposing students to nonexamples with the same non-critical attributes, 
students may begin to differentiate between critical and non-critical attributes. 
 

 

 

 

Figure 12. Nonexamples of triangles that have equal sides and equal angles. 

It is often the non-critical attributes which contribute to the makings of a 
prototypical example. Hershkowitz (1989) claimed that in addition to the necessary 
and sufficient (critical) attributes that all examples share, prototypical examples of 
a shape have special (non-critical) attributes “which are dominant and draw our 
attention” (p. 73). The prototypical examples often have the longest list of 
attributes. Consider for example, the square. Its critical attributes include: closed 
polygon, four sides, four vertices, four angles, opposite sides that are parallel, sides 
that are all equal measure, angles that all measure 90°, diagonals which bisect each 
other, diagonal which are equal measure. A subset of these critical attributes, 
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namely closed polygon, four sides, four vertices, and four angles, is the set of 
critical attributes for quadrilaterals. Thus the hierarchy of quadrilaterals is reversed 
when considering their critical attributes (see Figures 13a and 13b). While the set 
of quadrilaterals includes squares, the set of critical attributes of the square 
includes the set of critical attributes of quadrilaterals.  

 
 

 

 

 

 

 

 

 

 

Figure 13a. Hierarchy of                      Figure  13b. Hierarchy of quadrilateral 
             quadrilaterals.                                                    attributes.               

Smith, Shoben, and Rips (1974) argued that prototypical examples are rapidly 
identifiable as an example of the category, whereas other examples may take 
longer to identify. They also hinted at the possibility that some nonexamples are so 
dissimilar that they are rapidly identified as being nonexamples of the category. 
Could there be prototypical nonexamples? This question was raised by Tsamir, 
Tirosh, and Levenson (2008) when they found that some figures were rapidly and 
without question identified as nonexamples for triangles. In other words, they were 
intuitively recognized as nonexamples. The interplay between intuition and 
geometric thinking is discussed further in the next section. 

Intuition and geometrical concept formation 

In the second section we discussed the possible conflict between the concept image 
and concept definition (Vinner, 1991). Similarly, Fischbein (1993a) described the 
possible conflicts, contradictions, and internal tensions which may arise as children 
grapple with both the intuitive and formal nature of figural concepts. “An intuitive 
cognition is a kind of cognition that is accepted directly without the feeling that 
any kind of justification is required. An intuitive cognition is then characterized, 
first of all, by (apparent) self-evidence” (p. 232). The formal nature of mathematics 
refers to axioms, definitions, theorems, and proofs. These need to be actively used 
by the student when reasoning about and within mathematics.  

Consider, for example, the following figures (see Figure 14): 

Squares 

Rectangles

Parallelograms 
Quadrilaterals 

Parallelograms 

Rectangles 
Squares 

Quadrilaterals 
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         Figure 14a.           Figure 14b.                  Figure 14c.            Figure 14d. 

Which of these figures are parallelograms? Which of these figures would a child 
consider to be a parallelogram? Which of these figures would the child 
automatically identify as a parallelogram and which would need explaining? 

Although a child may be aware of the definitions for various quadrilaterals, the 
figure may promote an intuitive response, one which is immediate and where the 
child feels little need to justify himself. This may be the case when identifying 
Figure 14b as a parallelogram. At times, the coercive nature of intuitive cognitions 
is such that the figural particularities may be so strong as to annihilate the effect of 
the formal constraints. Thus, a child may claim that the long trapezoid in Figure 
14d is a parallelogram noticing the pair of parallel sides and ignoring that the 
definition calls for two pairs of parallel sides. It also might be the case that 
definitions are ignored when the figure has extra non-critical attributes. This is 
might be the case with the rectangle in Figure 14a and the square in Figure 14c. 
Even though a child may know the definition of a parallelogram, he may not accept 
that a rectangle and a square are parallelograms. At times, intuitive cognitions fall 
in accordance with mathematical truths, as with Figure 14b, and at times, they 
contradict these truths, as wtih Figure 14c. Fischbein concluded that a major task of 
mathematics educators is to help students cope with the interaction between the 
formal and intuitive constraints of the figural concepts and that instruction could 
and should shape and form mental processes. 

Are the van Hiele levels discrete? 

As the van Hiele levels extended Piaget’s theory, it was originally thought that 
these levels were discrete. Recently, however, research has suggested that the van 
Hiele levels may not be discrete and that a child may display different levels of 
thinking for different contexts or different tasks. For example, Burger and 
Shaughnessy (1986) claimed that reference to non-critical attributes often points to 
an element of visual reasoning. Thus, a child using this reasoning may either be 
operating at van Hiele level one or at van Hiele level two or perhaps at both 
levels concurrently. If the child is employing visual reasoning, we would say that 
he is operating at the first level. On the other hand, pointing to a specific attribute, 
albeit a non-critical attribute, and not judging the figure as a whole, may  
point to reasoning at the second level. Comparing a figure to the prototypical 
examples is what Hershkowitz (1990) called prototypical judgment. This may be 
partly a visual judgment as the “prototype’s irrelevant attributes usually have 
strong visual characteristics” (p. 83). Clements and Battista (2001) suggested that 
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the van Hiele levels of geometric reasoning may even develop simultaneously, 
albeit not necessarily at the same rate. Taking all of this into account we suggest 
that reasoning based on non-critical attributes may serve as a bridge between the 
first and second van Hiele levels of thought. In general, the level at which a child 
operates may be influenced by his age, experience, and the nature of the task. 
Whether or not the van Hiele levels are discrete or not, whether or not a child may 
operate on two levels at the same time or not, it is helpful to characterize children’s 
geometric thinking according to these levels. The van Hiele model allows us to 
assess children’s geometric reasoning and plan lessons that will guide students 
towards using only critical attributes as the deciding factor in identifying examples. 
In turn we move towards one of our major goals in mathematics education, that of 
developing concept images that are in line with the concept definitions.  

In this section, we discussed the development of geometrical concepts focusing 
on two-dimensional figures. In the next section, we discuss research related to 
three-dimensional figures. 

 Developing three-dimensional concepts  

Much of what has been previously discussed regarding two-dimensional figures 
may be applied to three-dimensional figures. For example, research has related to 
the possibility of extending the van Hiele levels to three-dimensional shapes 
(Gutiérrez, Jaime, & Fortuny, 1991). As such, at the first level, solids are judged 
based on the whole without consideration to the components. At the second level, 
children identify attributes such as the number of faces and the shape of faces, but 
do not perceive the relationship between attributes. At the third level, definitions 
are meaningful and students can logically classify solids based on the relationship 
between attributes. At the fourth level, students are able to prove theorems related 
to three-dimensional geometry. Regarding reasoning about three-dimensional 
shapes, Aubrey (1993), noted that children explore and build with three-
dimensional objects and describe regular three-dimensional shapes with the same 
mixture of formal and informal responses that are given for two-dimensional 
shapes.  

Other studies pointed to the use of plane geometry terminology when young 
children describe three-dimensional figures. For example, one study found that first 
graders often refer to a cube as a “square” (Nieuwoudt & van Niekerk, 1997). 
Other children described solids as “pointy” or “slender”, using terminology more 
appropriate for two-dimensional figures (Lehrer, Jenkens, & Osana, 1998). On the 
other hand, three-dimensional objects are tangible and thus may elicit additional 
modes of concept formation. For example, Roth and Thom (2009) described an 
episode where second graders were learning about three-dimensional objects by 
manipulating them and thus experiencing the objects in different ways. For 
example, one child picked up a cylinder, looked at it from different perspectives, 
put it down on the table and picked it up again. It was also compared to other, 
different size cylinders. The child experienced and described the cylinder as an 
object which is round, may be rolled between the palms of hands, has circular flat 
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ends, and feels smooth. According to their theory, the general concept of a cylinder 
was formed from the multitude of experiences which could then be activated by 
any one experience. Gutiérrez (1996) claimed that handling real three-dimensional 
solids may not be enough to acquire these concepts because rotations made with 
hands are usually done rather quickly and unconsciously, so that children, 
especially young children, may hardly be able to reflect on the actions.  

1.4 LOOKING AHEAD 

In this chapter we discussed theories and research related to the development of 
concepts, mathematical concepts, and geometrical concepts among children. These 
theories form the background for the following chapters. The next chapter focuses 
on the development of the concept of a triangle. We use triangles as a basic figure 
to illustrate how children may come to develop a concept image of a polygon that 
correlates with the concept definition of that polygon. In other words, as you read 
about triangles, you may imagine how the same may be said for pentagons or 
hexagons. 



 

CHAPTER 2 

WHAT DOES IT MEAN FOR PRESCHOOL CHILDREN 
TO KNOW THAT A SHAPE IS A TRIANGLE? 

BUILDING CONCEPT IMAGES IN LINE WITH 
CONCEPT DEFINITIONS 

Consider the following scalene triangle: 

 

 

 

Figure. 1. Scalene triangle. 

Dan (age 3), Nancy (age 4), and Jordan (age 5) learn in different preschools. 
Each child was presented with a drawing of the same scalene triangle shown in 
Figure 1 and was requested to answer the following two questions: (1) Is this a 
triangle? (2) Why? They responded: 

Dan: Yes, because it has vertices.1 

Nancy: Yes, because it has three vertices and three straight lines. 

Jordan: Yes, because it has three vertices, three sides, and it’s closed. 

Each child was also presented with the following non-triangle shape (see  
Figure 2) and again asked: Is this a triangle? Why?  

 

 

 

Figure 2. Rounded non-triangle shape. 

They responded: 

Dan: No, it doesn’t have vertices. 

                                                      
1 The word “vertices” is a literal translation from the Hebrew, “kodkod”, not to be confused with 
corners or points. 
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Nancy: No. It doesn’t have vertices like this one (points to the previous 
triangle). It’s like a triangle. It has three sides but no vertices. 

Jordan:  No. It doesn’t have vertices. It only has rounded corners. 

Are you surprised by the children’s judgments? Are you surprised by their 
justifications? As discussed in the previous chapter, young children mostly operate 
at the first van Hile level, relying on visual reasoning, taking in the whole shape 
when identifying examples and nonexamples of geometrical shapes. One would 
think that when confronted with the shapes in Figures 1 and 2, young children 
would not so readily identify correctly the scalene triangle in Figure 1 and that the 
rounded non-triangle would be incorrectly identified as a triangle. Yet, the 
children’s responses above indicate that it is possible for children, even as young as 
three years old, to incorporate critical attributes when identifying examples and 
nonexample of triangles. Although the above children learned in different 
preschools, all three preschools participated in enrichment programs that included 
professional development for the teachers as well as extra enrichment for the 
children within the preschool itself.2  

In this section we discuss how young children may develop a concept image of 
triangles in line with the concept definition of triangles. We focus on two key 
elements – identifying examples and nonexamples of triangles and explaining why 
an example is, or a nonexample is not, a triangle.  

2.1 IDENTIFYING TRIANGLES – ARE ALL EXAMPLES AND NONEXAMPLES 
CREATED EQUAL? 

In their study of two kindergartens and the triangle activities presented in each 
kindergarten, Tirosh and Tsamir (2008) described how two kindergarten teachers 
from the same community, Yardena and Anat (pseudonyms), wanted to investigate 
if their 4-5 year old children could identify triangles. Each teacher drew up a set of 
figures, one figure to a card, and asked each child if the figure was or was not a 
triangle. To their surprise, Yardena found that the children in her class were quite 
capable of identifying triangles but the children in Anat’s class were not. How 
could this be? In Figure 3 we present the shapes each teacher showed her children 
(as they appear in Tirosh & Tsamir, 2008, p. 11). 

Taking a close look at the examples of triangles each teacher presented in her 
class, we note that Yardena only presented to her children equilateral or isosceles 
triangles with a horizontal base and “right side up”. That is, she presented to her 
children prototypical examples, intuitively accepted as such by the children. On the 
other hand, Anat presented to her children one equilateral triangle with a horizontal 
base, one “upside down” isosceles triangle, a right triangle, a scalene triangle, and 
an obtuse triangle. No wonder the teachers’ investigations led to such different 
results.  
                                                      
2 The preschool for 3 year old children participated in the program, First Steps in Mathematics, run in 
collaboration with WIZO. The preschools for 4 and 5 year old children participated in the program, 
Starting Right: Mathematics in Kindergarten, initiated in collaboration with the Rashi Foundation.  
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Figure 3. Yardena’s and Anat’s cards. 

Now take a closer look at the nonexamples presented by each teacher. 
Yardena’s nonexamples consisted of mostly familiar shapes like a circle and 
square; and even if one claims that the hexagon was not familiar to children, it 
certainly does not resemble the overall shape of a triangle. Anat’s nonexamples 
consisted also of a circle and a square. However, she included other shapes that 
were visually similar to triangles, in a holistic way. In other words, Yardena’s 
nonexamples were visually far removed from triangles while Anat included some 
shapes that visually resembled triangles.  

The children in Anat’s class only identified the prototypical equilateral triangle 
as a triangle. They did not identify the other triangles as triangles. Most children 
incorrectly identified shapes 14, 17, and 18 as triangles. Reverting to Tall and 
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Vinners’ (1981) concept image-concept definition theory discussed in the previous 
chapter, we may infer that the children in Anat’s class had a concept image limited 
to the prototypical triangle. Regarding the children in Yardena’s class, we cannot 
know what their concept image is as these children were only presented with 
prototypical triangles and with nonexamples that were visually far removed from 
triangles.  

As the above study illustrates, an important element of what it means to know 
triangles is being able to identify a wide variety of examples and nonexamples. We 
have also illustrated that not all examples and nonexamples are created equal. That 
is, although all examples share the same necessary and sufficient critical attributes, 
a prototypical example has special (non-critical) attributes “which are dominant 
and draw our attention” (Hershkowitz, 1989, p. 73). Mathematically, all examples 
are equal. However, psychologically, they may not be identified with equal ease. 
Prototypical examples often have the longest list of attributes. Smith, Shoben and 
Rips (1974) argued that some examples are rapidly identifiable as an example of 
the category, whereas other examples may take longer to identify. In other words, 
some examples are intuitively accepted as representative of the concept in that they 
are accepted immediately, with confidence, and without the feeling that any kind of 
justification is required (Fischbein, 1987). Regarding the identification of non-
triangles, it was found that first and third grade students identified intuitive 
nonexamples of triangles in a shorter time than it took them to identify non-
intuitive nonexamples of triangles (Spector, 2010). 

Identifying which examples and nonexamples may be intuitively recognized as 
such is an important first step in building appropriate concept images. In our study 
of 42 children ages 4-5 years old (Tirosh, Tsamir, & Levenson, 2010), and 65 
children ages 5-6 years old (Tsamir, Tirosh, & Levenson, 2008), different 
geometrical figures, each figure printed on a separate card, were presented one at 
time to children. Each child was asked if the figure was a triangle. These children 
learned in preschools where the teachers had not attended professional 
development courses in mathematics and where no special or extra mathematics 
enrichment was provided. Among the figures were seven examples and seven 
nonexamples of triangles (see Table 1). Examples were chosen to include 
prototypical as well as non-prototypical triangles. Following Hershkowitz (1990) 
the equilateral and isosceles triangles were considered to be prototypical examples. 
The other five examples were not considered prototypical.  For example, Burger 
and Shaughnessy (1986) found that young children did not identify as a triangle a 
long and narrow triangle, such as the scalene triangle even when they admitted that 
the figure had three points and lines.  

Results showed that indeed the equilateral and isosceles triangles presented 
“right side up” and with a horizontal base, were identified correctly and 
immediately by the vast majority of children. It is interesting to note that regarding 
the examples, the declining order of frequencies was the same for both age groups 
of children and that the isosceles and equilateral triangles with a different 
orientation were identified correctly in more instances than triangles with varied 
size angles and sides. This suggests that orientation may be less problematic than 
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Table 1. Frequency (in percents) of immediate correct identification.  

 
the size of the angles or sides. It also makes sense. When a triangle is presented  
in a non-prototypical orientation, many children will rotate the triangle, orienting it 
to fit the prototypical image (Martin, Lukong, & Reaves, 2007). Thus, the 
orientation may be changed. On the other hand, the size of angles and sides may 
not be changed. We also note, however, that if we focus on the sideways and 
upside down triangles, it seems that the older group was more reluctant than the 
younger group to accept triangles with a different orientation. Possibly, the more 

Triangles 
4-5 year 
olds 

(N= 42) 

5-6 year 
olds 

(N=65) 
Non-triangles 

4-5 year 
olds 

(N=42) 

5-6 year 
olds 
(N=65) 

Equilateral 

  

88 98 Square 

 

97 100 

Isosceles 

 

83 94 Hexagon 

 

100 100 

Sideways  

 

62 51 Ellipse 

 

 

100 100 

Upside down 

 

60 48 Pentagon 

 

 

88 82 

Right  48 42 Zig-zag 
“triangle” 

 

 

80 82 

Obtuse 19 20 Open 
“triangle” 

 

71 80 

Scalene 

 

 

 

5 11 Rounded 
“triangle” 

 

7 5 
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experience children have with prototypical shapes and orientation, the more 
reluctant they are to accept differences. Burger and Shaughnessy (1986) noted that 
even among high school students, orientation could be an obstacle for correct 
identification.  

We now consider the nonexamples. The nonexamples were all two-dimensional 
shapes gathered from three categories: commonly recognized geometrical shapes 
(other than triangles), uncommon geometrical shapes (other than triangles), and 
“almost triangles”. In the first category was the square, regular hexagon, and 
ellipse. Many current national curricula around the world explicitly state that 
preschool children (ages 3-6) should recognize and use the mathematical names for 
shapes. For example, in the U.S., the Curriculum Focal Points (NCTM, 2006) state 
that kindergarten children should identify by name “a variety of shapes such as 
squares, triangles, circles, rectangles, (regular) hexagons, and (isosceles) trapezoids 
presented in a variety of ways” (p. 12). In Israel, the National Mathematics 
Preschool Curriculum (INMPC, 2008) recommends that children ages 4-6 years 
identify by name triangles, circles, quadrilaterals, pentagons, and hexagons. At a 
later stage they recommend adding non-common figures such as ellipses and semi-
circles. In the second category, uncommon geometrical shapes, is the pentagon. 
The pentagon used in this study is non-prototypical of pentagons. It was positioned 
with a horizontal base, in a similar manner as the prototypical triangle, and was 
elongated in such a manner as to visually suggest a triangle. The third category, 
“almost triangles” consisted of shapes that have one or more attributes missing but 
otherwise share most of the attributes of the prototypical triangle. In this category 
are the open “triangle”, rounded “triangle”, and the zig-zag “triangle”. The open 
“triangle” is missing the critical attribute of being a closed figure. The rounded 
“triangle” is missing vertices. The zig-zag “triangle” has jagged sides. On the other 
hand, all have horizontal bases and all have the illusion of threeness. Some of these 
figures have been investigated in other studies. For example, Hasegawa (1997) 
found that the rounded “triangle” is often identified as a triangle. Regarding the 
open “triangle”, some studies have shown that “openness” is regarded by many 
students to disqualify a figure from being a polygon (Hershkowitz & Vinner, 1983) 
while others have found that it is not necessarily a disqualifier (Rosch & Mervis, 
1975). The zig-zag “triangle” was a figure created for this study. It is a 15-sided 
polygon. Yet is has the illusion of a triangle with jagged sides. Taken all together, 
the group of non-triangles afforded us the opportunity to investigate what makes a 
non-triangle intuitively accepted as such.  

Referring back to Table 1, we first note that more children correctly identified 
the nonexamples than the examples. Among the nonexamples, the square, hexagon, 
and ellipse were immediately identified as nontriangles by all of the children in 
both age groups, except for one. This was not surprising. After all, we had taken 
into consideration that all preschool teachers following the national curriculum 
would present children with these shapes. In fact, a little more than half of the 
children responded to the square by simply identifying this figure correctly as a 
square, which apparently was enough to exclude it from the category of triangles. 
As mentioned in the first chapter, the act of naming may be considered a form of 
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categorizing (Waxman, 1999). In addition, if we visually consider the whole shape, 
these three figures, as opposed to the other four nonexamples, are very dissimilar to 
the prototypical triangle. On average, approximately 80% of the children correctly 
identified the non-prototypical pentagon, the zig-zag “triangle”, and open 
“triangle” as non-triangles. Finally, an average of 6% of the children identified the 
rounded “triangle” as a non-triangle. This is consistent with Hasegawa’s (1997) 
findings, as mentioned above. 

To summarize this section, we note that not all examples are recognized as such 
by preschool children and indeed not all nonexamples are recognized as such by 
preschool children. Watson and Mason (2005) coined the term “personal example 
space” to describe the collection of examples that is accessible to a person at a 
given time in a given circumstance and the interactions between these examples. 
We believe that a personal “nonexample space” may also exist. Often, learners 
have a very limited collection of examples as well as nonexamples in mind. We 
suggest dividing the personal example and nonexample space of a figure along two 
dimensions: a mathematical dimension and a psycho-didactical dimension (see 
Figure 4). In the case of triangles, the mathematical dimension divides the figures 
into examples and nonexamples of triangles according to the concept definition. 
The psycho-didactical dimension divides the figures into what is and is not 
intuitively identified as triangles and non-triangles according to the child’s current 
concept image. The results of the above study may then be organized as in Figure 
4. We argue that a significant aim of learning mathematics is extending and 
enriching the space of examples and nonexamples to which one has access. In 
order to promote this extension, it is necessary to take into consideration children’s 
reasoning. This is discussed in the next section.  

2.2 REASONING ABOUT TRIANGLES 

Promoting correct identification of intuitive and nonintuitive examples and 
nonexamples should go hand in hand with promoting geometrical reasoning. 
Correctly identifying triangles and nontriangles is one element of knowing 
triangles. Equally important is being able to explain why some figure is or is not a 
triangle. Let us revisit the three children quoted in the beginning of this chapter. 
All three children identified correctly the scalene triangle. Moreover, all three 
mentioned one or more critical attributes of a triangle. In other words, when 
identifying triangles, these children were capable of operating at the second level 
of van Hiele reasoning, breaking up the shape into attributes. Yet, it is not enough 
to notice the attributes of a geometrical shape. As mentioned in chapter one, 
attributes may be critical or non-critical and identifying a geometrical shape must 
be based solely on the critical attributes, derived from the definition.  
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Figure 4. Intuitive and non-intuitive examples and nonexamples of triangles. 

As mentioned in the first chapter, Fischbein (1993b) noted that the figural 
concepts comprise both intuitive and formal aspects. The image of the figure 
promotes an immediate intuitive response. Yet, geometrical concepts are abstract 
ideas derived from formal definitions. The interaction between the image and the 
abstract idea promotes both visual and attribute reasoning. Tsamir, Tirosh, and 
Levenson (2008) further differentiated between visual reasoning that takes into 
consideration the whole shape, visual reasoning that includes naming the figure, 
attribute reasoning that refers to critical attributes, and attribute reasoning that 
refers to non-critical attributes. Table 2 (Tsamir, Tirosh, & Levenson, 2008, p. 88) 
shows examples of each type of reasoning.  

The categories in the table were then used to describe kindergarten children’s 
reasoning regarding nonexamples. They noted that most reasons were based on 
critical attributes, followed by, in decreasing preference, naming the figure, whole 
shape reasoning, and reasoning based on non-critical attributes. However, when 
comparing the combined results of the two categories representing visual reasoning 
with the combined results of the two categories representing attribute reasoning, 
more reasons were based on visual cues than on specific attributes.  

 
 
 
 

Dimensions Psycho-didactical 

Mathematical Intuitive Non-intuitive 

Examples 

1. 
Isosceles 
triangle 

4. Equilateral 
triangle 
 

2. 
Sideways 
triangle 

5. Upside 
down 
triangle 

6. 
Right 
triangle 

8.Scalene 
triangle 

13 
Obtuse 
triangle 

Non-examples 

3. Square          11. Ellipse 

 

9. Hexagon 

7.Zig-zag  
“triangle" 

10. 

Pentagon 

12.Open 
"triangle" 

14. 
Rounded 
"triangle" 
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Table 2. Coding reasons after identifying a figure 

Focusing on the specific nonexamples provided some interesting insights 
regarding the relationship between reasoning and nonexamples. For example, 
reasoning regarding the square, ellipse, and hexagon was mostly based on ability to 
name the shape. When children did not know the correct name for one of these 
shapes, they provided imaginary names such as a mirror or an egg for the ellipse. 
Looking at the non-prototypical shape of the pentagon, an exception to the general 
trend was observed. Whereas for the other non-triangles, no more than 6% of the 
reasons were based on non-critical attributes, when it came to the pentagon, 28% of 
the responses consisted of this type of reasoning. Furthermore, this type of 
reasoning consistently went along with correct identification of this figure as a 
non-triangle. Recall that the pentagon was a non-prototypical pentagon and was 
actually constructed to be somewhat similar to a triangle. Typically, children who 
used this type of reasoning commented on the figure’s thinness or stretched out 
look. Even when children used critical attribute reasoning for this shape, their 
reasoning was often incorrect. For example, one child who correctly identified the 
pentagon as a non-triangle claimed “the sides are crooked.” In other words, this 
child knew that a triangle must have three straight sides and interpreted the two 
sides on the left and the two sides on the right as just one side on the left and one 
on the right. 

In the group of “almost triangles”, more responses (over 35%) consisted of 
visual reasoning based on the whole figure for these non-triangles than for any of 
the other non-triangles. This type of reasoning led to correct or incorrect 
identification depending on whether the child thought that it looked like a triangle, 
or not. The exception in the group was the zig-zag “triangle”. This figure 
stimulated the children’s imagination. More responses (33%) consisted of naming 
this figure as some object (a bonfire, mountain, or thorn bush) than was done for 

Category Reasons 

Purely visual reference to the 
whole figure  

“It looks (doesn’t look) like a triangle.” 
“You see (don’t see) the shape.” 
Traces the figure without saying a word. 
 

Naming 

“It’s a rhombus (or some other geometric shape 
– correct or incorrect).” 
“It’s a bonfire (names an object).” 
 

Reference to non-critical 
attributes 

“Because this (points to a particular side) is too 
small (short, big, long).” 
“It’s (referring to the figure) too thin (fat, long, 
sharp).” 
 

Reference to critical attributes 

“It has three (four, five, many, none) sides 
(lines, points, corners).” 
“It has to be closed.” 
“It has three rounded points.” 
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any of the other figures in this study. This kind of reasoning was usually 
accompanied by a correct identification.  

An important result in the sub-group of “almost triangles” was that considerably 
more reasons were based on critical attributes when identifying these figures than 
for the other non-triangles. This result was especially notable for the open 
“triangle”, where 62% of the responses included this type of reasoning. Yet, this 
reasoning was not always accompanied by a correct identification. Some children 
simply stated that “it’s still a triangle, even if it’s open.” Interestingly, 20% of the 
reasons referred to the amount of vertices being less than three. This second 
comment actually shows that some children knew that a vertex must be the 
connection of two segments and not just the end point of one segment. 

Regarding the rounded “triangle”, 42% of the critical attribute reasons focused 
on the three “sides” of the “triangle”. These were consistently associated with an 
incorrect identification. The rest focused on three “points” or “corners”. While 
most children did not comment on the roundness, four children pointed to the three 
rounded corners and claimed, “it has three corners even though it’s rounded.” 
These children did not regard roundness as disqualifying the figure from being a 
triangle.  

When considering the way the group of “almost triangles” was constructed, the 
fact that more children based their reasoning on critical attributes for this group 
than for the other two groups is especially interesting. The zig-zag “triangle” was 
missing one, possibly two critical attributes, depending on the focus of the child. 
As illustrated in Figure 5, zooming in, the zig-zag “triangle” had more than three 
vertices and sides. Zooming out, the zig-zag “triangle” had two “sides” that were 
not straight.  
 

 

 

 

 

Figure 5. “Zooming in” and “zooming out” the zig-zag “triangle. 

The rounded “triangle” was missing vertices. Yet, more children focused on the 
critical attribute of openness than on the other missing critical attributes. This 
raises two questions: Are all critical attributes equal in the eyes of children? Is it 
more noticeable when an attribute is missing than when it is there but in a 
deformed manner? 

Reasoning with critical attributes is a necessary step in the child’s development 
of geometrical concepts. The study described above suggests that young children, 
even those who do not attend a preschool with an especially enriched geometrical 
environment, employ reasoning with attributes. Yet, as we also saw, this type of 
reasoning is not sufficient. A child may focus on the sides of a triangle but discount 

Zoom-in 
Zoom-out 
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the rounded corners as not being important. How can we bring children to consider 
all of the critical attributes of a figure? How can we promote children to build 
concept images in line with concept definitions?  

2.3 BUILDING CONCEPT IMAGES IN LINE WITH CONCEPT DEFINITIONS: THE 
POWER OF A WORKING DEFINITION 

We believe that the key to bringing children’s concept image of a figure closer to 
the concept definition for that figure is to promote the use of a definition as the 
decisive criterion for determining if an object is an example of a given concept. In 
geometry, specifically, we allow that visual judgment may be a necessary first 
level, but analytical judgment based on critical attributes should follow. 

If the key to developing geometrical concepts in line with geometrical 
definitions is to promote the use of a definition, then of utmost importance is 
choosing a mathematically correct definition of a triangle appropriate for preschool 
children. What do we mean by appropriate? Consider the following definition of a 
triangle: A triangle is a three-sided polygon. It seems obvious that the word 
polygon may be problematic for young children. But the word polygon is 
problematic not only because it is unknown but because it infers within it other 
critical attributes. A polygon is a closed figure made up of sides. A triangle, like 
any polygon must be closed. It also must be made up of straight and not curved 
sides. The critical attributes of having straight sides and being closed are implicit in 
the term polygon, rather than being explicit. An additional problem with the above 
definition is that it makes no mention of vertices. Of course, mathematically, if a 
figure has straight sides and is closed then it follows that it necessarily has vertices. 
In addition, if a figure has three straight sides and is closed then it follows that it 
has three, and not four or five, vertices. However, this type of reasoning is more 
prevalent for older children operating at the third and fourth van Hiele levels and 
not the young children in preschool.  

For preschool children, a minimal definition may be a disadvantage. Rather, one 
approach, that we chose to use in our work with young children, is to develop a 
working definition, a definition that children can use, that points to all the critical 
attributes, that children can refer to and check back with when examining a 
geometrical figure. Thus, although a triangle may be defined as a three-sided 
polygon, we use an expanded definition for young children which explicitly points 
to all the critical attributes of a triangle: a triangle is a closed figure which has three 
straight sides and three pointed vertices. This definition stresses that a triangle must 
be closed. It must have straight and not curved sides. It must have pointed and not 
rounded vertices. It must have three, and only three, sides and vertices. There is no 
mention of a polygon. 

Another, equally important feature of our definition is its use of mathematical 
language. We do not substitute the word corner for vertex. Keeping in mind that 
knowledge built during preschool will follow the children throughout elementary 
school, we believe that it is important to build accurate foundations from the 
beginning. Although it may seem that the word corner is more child-friendly than 
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vertex, a corner is not a well defined mathematical term. Corners may be rounded. 
A vertex may not.  

By presenting children with this definition of a triangle we are presenting them 
with a reasoning tool. Of course, children must learn how to use the tool. They 
must also learn the meaning of each term in the definition and how to check each 
figure against the definition. This brings us back to the issue of examples and 
nonexamples. In the beginning of this section we pointed out the necessity of 
presenting children with both intuitive and non-intuitive examples and 
nonexamples. Here we add that the order and combination in which examples and 
nonexamples are presented may be used to illustrate to children the various critical 
and non-critical attributes of a triangle and encourage the use of a working 
definition as tool.  

Let us begin with the critical attribute of pointed vertices. If we want the child to 
learn the meaning of a vertex and that it must be pointed rather than rounded, we 
may present to a child the following two figures (see Figure 6):  

 
 

 

                   6a: Prototypical triangle                       6b: Rounded corner “triangle” 

Figure 6. Illustrating pointed vertices. 

The first is a prototypical triangle, intuitively recognized as such. The second is 
visually similar to the first. It is approximately the same size. It has the same 
orientation with horizontal base and is “right side up”. They both have the quality 
of “threeness”. The difference between the figures is that the figure on the left has 
vertices and the figure on the right does not. Young children may ignore this 
difference at first. As noted previously in Table 1, the triangle-like figure with 
rounded figures was the figure for which the least amount of children in both the 
pre-kindergarten and kindergarten group offered a correct identification. Consider 
the following statements regarding the second figure given by 5-6 year olds who 
had not attended preschools participating in mathematics enrichment programs. 
These children claimed that the second figure was a triangle and explained their 
identification: 

C1: It is a triangle because it looks like a triangle. 
C2: It is a triangle because it has three sides. 
C3: It is a triangle because it has three corners even though they’re rounded.  

Regarding C1, we cannot know if the child noticed the rounded corners or not. 
We do know that his explanation displays visual reasoning taking in the whole 
figure at once without relating to any attributes. The second child, relating to three 
sides, displays critical attribute reasoning. Yet, he makes no mention of the 
vertices. He has either not noticed the missing vertices or has noticed them and 



WHAT DOES IT MEAN FOR PRESCHOOL CHILDREN 

31 

discounted them as not being critical. C3 has noticed the rounded corners but 
claims that roundness is not critical. Now consider C4: 

C4: It is not a triangle because it has three sides but it doesn’t have vertices. 

C4 was a 5-year old learning in one of preschools participating in our program. His 
response indicated that he was aware of the working definition of a triangle and 
how to use the definition as a tool. On the one hand, he pointed out three “sides”. 
Yet, despite that in his eyes the triangle had three sides, it was missing the vertices 
and therefore could not be a triangle. This is a significant step in the development 
of geometrical, and perhaps all mathematical concepts. This child was aware that if 
even one critical attribute was missing, then the figure or instance presented must 
not be an example of a triangle. In other words, although the figure may look like a 
triangle, it is missing the critical attribute of having pointed vertices, which is 
enough to discount it as being a triangle.  

In addition to paying attention to vertices, it is important that children make note 
of the sides. Consider the following figures (see Figure 7): 

 

   

 

             7a: Concave sides                       7b: Convex side                7c: Straight sides 

Figure 7. Illustrating straight and curved sides. 

Once again, all three figures have the same prototypical orientation with a point 
centered on the top. They all have a quality of “threeness”. All three figures have 
three “points” or “corners”. Yet, only the triangle has three vertices. What 
distinguishes between points and vertices is their connection to sides. Children may 
not always be aware of the distinction between points and vertices and may 
therefore have difficulty identifying the first two figures as non-triangles if they 
only focus on the points. For example, C5, a five year old, claimed that all of the 
above figures were triangles and accompanied each of the three identifications with 
the same reason, “It’s a triangle because it has three corners.” Of course, some 
children, operating at the first van Hiele level, will claim that the first two figures 
are triangles because “they look like triangles.” However, this is not what C5 
claims. He takes notice of what he terms corners. He also mentions the critical 
attribute of three. The question is: What is C5 missing? We may surmise that C5 is 
cognizant of the necessity of vertices, despite the terminology used. What he fails 
to notice is the curved sides in Figures 7a and 7b. In fact, C5 does not mention 
sides at all, either curved or straight. Having a working definition means that the 
child is able to check the figure not only for the existence of vertices but also for 
sides. Taking into consideration the young age of the children means realizing that 
children may notice attributes of a figure but may not necessarily see the 
relationship between these attributes. A working definition allows the child to run 
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through a check list of attributes, where each attribute must be accounted for. If C5 
had made use of such a definition, then, in addition to noticing three points, the 
sides would have been checked. Of course, it also must be understood that the sides 
must be straight. 

If the term vertex must obviously be taught to children, it is not so obvious that 
children must learn the meaning of “straightness”. Yet, this too should not be taken 
for granted. Some children will ignore the curvature and claim that the first two 
figures are triangles because “they have three sides” or because “they have three 
lines.” Yet, children who participated in our programs were able to identify the first 
two figures as non-triangles, noting that not all of the sides were straight. As one 
four-year old reasoned regarding Figure 7a, “It’s like a triangle, but it isn’t. It has 
three vertices but three sides that are curved. They need to be straight.” We can 
almost picture the child going through a checklist in her mind. She notes the visual 
similarity to a triangle, notes the three vertices, and still correctly identifies this 
figure as a nonexample because the sides are not straight. In a different case, the 
researcher presented the first figure to a three year old participating in our program 
and the following discussion ensued: 

R: Look. I found a triangle. 
C6: No. (Smiling) It’s not a triangle. 
R: No? I made a mistake? Why isn’t it a triangle? 
C6: Because it’s curved! 

The child then went on to pick up a different figure which was indeed a triangle 
and handed it to the researcher. This episode is interesting for two reasons. First, 
the child was confidant enough in her knowledge to disagree with the grown up 
authority. In addition, this three-year old child did not state that the line “was not 
straight”. Instead, she had learned that the opposite of straight (in geometry) is 
curved and used this word to explain to the researcher why the researcher had 
“made a mistake”. Teaching children correct mathematical language may serve as 
tool that can then be used when reasoning about mathematics.  

Before moving on to the next critical attribute we pause to consider the 
difference between Figures 7a and 7b. These figures differ in two ways. The first 
has three curved sides and the second has only one. The first is curved inward and 
the second outward. In our research, we have come to understand that when a 
critical attribute is tampered with, depending on the type of tampering, children’s 
reactions may differ. For example, two four-year olds who had not participated in 
our programs incorrectly identified Figure 7a as a triangle. The first gave no reason 
at all. The second merely added the word “three” and gestured toward each of the 
points. Yet, although these children incorrectly identified Figure 7a, they both 
correctly identified Figure 7b as a nonexampe. Again, the first did not say 
anything. However, he did gesture towards the curved line. The second verbalized 
that the line was curved. Did they not see that the first figure also had curved lines? 
Although we do not explicitly have the answer to this question, it could be that for 
the children there is a difference between concave and convex lines. It could also 
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be that when all three lines are the same, it is not as apparent that something has 
gone amiss as when two lines are the same and one is different.  

Consider now the critical attribute of closure. Referring back to Table 1 we note 
that the pre-kindergarten children tended to ignore this attribute more than the 
kindergarten children. In Figure 8 we present possible ways of presenting this 
attribute to children.  

 

 

                    8a                               8b                              8c                          8d 
Figure 8. Illustrating closed and open figures. 

Figures 8b, 8c, and 8d are all open figures. Take a minute to contemplate the 
difference between how these figures are open and how each one may affect a 
child’s understanding of the attribute of being closed. Figures 8b and 8d were 
presented to 107 4-6 year olds not participating in our programs. While 
approximately 75% of the children correctly identified Figure 8b as a nonexample, 
only 7% of the children identified Figure 8d as a nonexample. Why such a huge 
difference? Several possible reasons may explain these results. First, children often 
engage in activities that involve “connecting the dots” to form some picture. Such 
an activity is often used when teaching young children to write letters or number 
symbols. Thus, when presented with a dotted figure, they may automatically 
assume that the dots are to be connected. Another explanation for this phenomenon 
may be the result of Gestalt recognition of figures, appropriate for young children 
operating at the first van Hiele level of geometrical thinking. Recall, children at 
this level take in the whole, without regard for the attributes. It may also be a 
combination of these reasons. As Fischbein (1993b) noted, Gestalt features may be 
inspired by practice. The child may know that the dotted lines means that the figure 
is not closed, but the practice of connecting dotted lines may lead him to Gestalt 
thinking.   

The difference between Figures 8b and 8c lies in where the figure is broken. 
How could this make a difference? In our study of 65 kindergarten children 
(Tsamir, Tirosh, & Levenson, 2008), we noted that 20% of the children claimed 
that a figure similar to that of Figure 8b (see the open “triangle” in Figure 4) was 
not a triangle because it only had two vertices. One three-year old claimed that this 
figure was not a triangle because “there is no vertex here.” In other words, Figure 
8b may be considered a non-triangle because it has a missing vertex, thus violating 
the critical attribute of threeness. We do not claim that this reason is inappropriate. 
Only that, if we specifically want the children to focus on the attribute of being 
closed, then Figure 8b may not be enough.  

We end with the critical attribute of a triangle having three, and only three, 
vertices and sides. On the one hand, it may seem that this critical attribute is 
obvious to children. Our research with kindergarten children (Tsamir, Tirosh, & 
Levenson, 2008) suggested that for a triangle, the perception of threeness has a 
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stronger pull than the necessity for it to be closed or for its vertices to be pointy. 
Furthermore, it might be argued that the bond between a triangle and its attribute of 
threeness is also expressed in the name itself, which in many languages, including 
Hebrew, stems from the root three. So, if a child perceives threeness in a shape, 
then the child sees a triangle. Conversely, a shape which is missing threeness 
cannot be a triangle.  

If the necessity for threeness is obvious to children, it may be even more 
difficult to bring the criticalness of this attribute to children’s’ attention. How may 
we demonstrate this attribute to children?  

Consider the following figures: 

 

 

 

                  9a                             9b                             9c                          9d 

Figure 9. Illustrating the attribute of threeness.  

Which of the above demonstrates how the critical attribute of three may be 
violated? We have already seen that many young children correctly identify the 
square as not being a triangle, simply by naming it a square. Thus, although the 
square is not a triangle because it has four, and not three, vertices and sides, it may 
not be the best choice for bringing this critical attribute to light. On the other hand, 
Figure 9c, like the square, is also a quadrilateral with four sides and vertices, but 
unlike the square, most young children are not familiar with the name quadrilateral. 
Therefore, it would be unlikely for children to discount this figure as a triangle, 
because they can name it otherwise. In addition, Figure 9c resembles the 
prototypical triangle, in that it has a vertex centered at the top. It also gives the 
illusion of threeness while having four sides. Figure 9d also gives the illusion of 
threeness. Zooming out, the overall picture one perceives is that of a three-sided 
figure of which two sides are jagged, losing the critical attribute of straightness. If 
one zooms in on the non-horizontal sides, then the correct definition of this figure 
would be a 15-sided polygon, thus losing the critical attribute of threeness. As with 
the other critical attributes, there is no “best” way to illustrate the violation of an 
attribute. Instead, the teacher and researcher should be aware of the possible issues 
which each example and nonexample may elicit from the child. 

Although our study with kindergarten children suggested that the attribute of 
threeness was intuitively connected to triangles, this may not be true of younger 
children. Children between the ages of 3 to 6 are still developing their counting 
skills, including one-to-one correspondence and cardinality. In our programs, we 
offer children many opportunities to count objects. The three-year olds often need 
help with one-to-one correspondence. And even when they have mastered one-to-
one correspondence, they have not necessarily reached the understanding of 
cardinality. When asked how many vertices the triangle has, many three-year old 
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children will correctly count the vertices and repeat the process of counting for 
each time they are asked about the number of vertices (or sides). Recall that Dan, 
the three-year old quoted in the beginning of this chapter, mentioned that the first 
shape was a triangle because it had vertices. He did not mention that there were 
three vertices, although Dan had pointed to each vertex. The attribute of threeness, 
as opposed to the other attributes, is connected with the child’s development of 
counting skills. Until he has mastered this skill, he may not be ready to consider 
this attribute. That is not to say that counting the vertices is inappropriate for three-
year olds or that the critical attribute of threeness should be omitted for the 
youngest of children. We take the stand that children may increase their 
mathematical skills with proper instruction. Counting vertices, pointing out the 
difference between the three vertices of a triangle and the four vertices of a square, 
may increase children’s awareness of the connection between number and 
geometry skills. This is important for all ages.  

2.4 SUMMARY  

Let us consider one more time the three children quoted at the beginning of this 
chapter. Dan, age 3, notices the vertices of the figures. He does not mention any of 
the other attributes of a triangle. Nancy, age 4, mentions vertices and sides. Jordan, 
age 5, mentions vertices, sides, and that the figure is closed. It would be too 
simplistic to conclude that the age of the child determines to what degree he or she 
is capable of working with a concept definition. Children develop at different paces 
and it is our responsibility as educators to help each child move forward. On the 
other hand, as pointed out above, some attributes, such as threeness, may be linked 
to development. In general, young children can learn to incorporate the concept 
definition as a tool for identifying examples and nonexamples of triangles and thus 
increase their example and nonexample space. In a more recent study, we 
investigated kindergarten children’s identification of various examples and 
nonexamples of triangles. Of the 215 participants, 134 had learned in kindergartens 
which participated in our program and 81 did not. Results are presented in Table 3. 
These results demonstrate that children learning in our program identify correctly 
more examples and nonexamples than children not in our program. Furthermore, 
over 90% of the reasons given by children learning in our program were based on 
the critical attributes of the triangle. 

We would like to remind the reader that our goal is for children to use the 
definition of a triangle, not a formal definition, but a working definition tailored to 
meet the developmental needs of the child, as the decisive criterion for determining 
if an object is or is not an example of a triangle. We propose that a minimal 
definition is not only insufficient for young children but may actually be confusing 
to young children. Instead, we propose developing working definitions which bring 
to the fore each of the critical attributes. By illustrating a variety of examples and 
nonexamples we explored how children may develop an appreciation for each of 
the different critical attributes and how reasoning goes hand in hand with 
identification.  
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Not all geometrical figures are easily defined in preschool. In the next section, 
we consider the case of circles and how developing children’s conception of a 
circle may differ from developing children’s conception of triangles. 

Table 3. Frequency of correct identification and critical attribute reasoning among 
kindergarten children. 

 
Correct Identification Critical attribute reasoning 

 Non-program 
children 
(N=81) 

Program 
children 
(N=134) 

Non-program 
children 
(N=81) 

Program 
children 
(N=134) 

Equilateral 
triangle 100 100 40 98 

Circle 
 100 100 30 90 

Rounded 
“triangle” 19 93 42 98 

Zig-zag               
“triangle”  64 99 30 94 

Scalene                      
triangle 17 95 11 96 

Pentagon 
 68 90 17 96 

Open 
“triangle” 81 100 59 100 

Concave 
 “triangle” 53 97 35 99 

Right 
triangle 
 

65 99 21 95 

 

 

 



CHAPTER 3 

THE CASE OF CIRCLES – WHEN THE CONCEPT 
DEFINITION IS INAPPROPRIATE FOR THE AGE OF 

THE CHILDREN 

It is obvious that mathematically, triangles and circles are different. But are they 
different psychologically? Let’s try an experiment. Draw a circle. Now draw 
another circle. Now draw another circle. In what ways are the circles that you drew 
different? Perhaps they are different sizes. Perhaps they are different colors. 
However, the symmetry of the circle does not allow for many different types of 
variations. Unlike triangles, non-critical attributes such as orientation or aspect 
ratio do not apply to circles. The circle is also one of the most readily identifiable 
figures among young children. In one study, children ages 4-6 years old identified 
correctly more circles than they did squares, triangles, and rectangles (Clements, 
Swaminathan, Hannibal, & Sarama, 1999). 

Let us try another activity. For each figure below (see Figure 9), tell if the figure 
is or is not a circle and why. Were you able to explain why figures c and i are 
circles? Were you able to explain why the other figures are not circles? How is this 
activity different from a similar activity involving triangles? (Perhaps take a 
moment to look back at some examples and nonexamples of triangles as in Chapter 
2, Figure 4 – Intuitive and non-intuitive examples and nonexamples of triangles.) 
How might children respond to this circle activity? 

Figure 1. Is it a circle? Why? 

Amit, Dan, and Yael are three four-old year olds who have already learned how to 
differentiate between triangles and non-triangles using critical attribute reasoning. 
All three children know that figures c and i are circles. When asked to explain why 
figure c is a circle each responds differently: 
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Amit: It’s a circle because it doesn’t have any vertices. 
Dan: It’s a circle because... you see it’s a circle. 
Yael: It’s a circle because it’s closed. 

Amit and Yael refer to attributes they had previously learned in connection with 
triangles. Amit’s response indicates that he knows that a circle may not have 
vertices. Perhaps he is trying to express how the circle and triangle are different. 
Yael, on the other hand, points to an attribute that the circle has in common with 
the triangle. Both the triangle and the circle are closed figures.  

If a figure does not have vertices must it then be a circle? According to Amit’s 
explanation, figure b, for example, would also be a circle. Yet, Amit claims that 
figure b is not a circle because “it’s like an egg.” Yael’s explanation is also not 
satisfactory. Yes, a circle is closed but so are many figures than are not circles. 
Being closed is not enough reason for a figure to be a circle. Like Amit, Yael 
claims that the ellipse, also a closed figure, is not a circle, because it is like an egg. 

Dan cannot explain why figure c is a circle. It seems that for Dan, he just sees 
the circle. This is typical of Gestalt reasoning, where the object appears first as a 
whole and only after does one perceive parts as opposed to first seeing parts which 
come together to form a whole.  

As we discussed in the previous section, the mathematical definition of a 
concept is the decisive criterion by which we sort instances into examples and 
nonexamples of that concept. A circle is defined as the locus of points in a plane 
which are equidistant from a given point called the center. And therein lies the 
problem. How can this definition be made “user friendly” to young children? The 
notion of a collection of points which come together to form a closed figure is quite 
abstract. In addition, we would need to explain the notion of distance. One way of 
illustrating these ideas to children would be to physically demonstrate how a circle 
may be constructed. We could build a compass with the children by tying one end 
of a string to a pencil or some other marker and the other end to an object with a 
sharp point such as a thumb-tack. By placing the thumb-tack on the paper (and 
keeping it still), we could then extend the compass string fully, pull the string 
around the center thumb-tack and draw the line that it subscribes. While this 
demonstration may illustrate the notion of a center and distance from the center, 
translating the physical motions to a verbal definition for such young children, 
would be rather difficult. It is no wonder, then, that the children could not 
satisfactorily explain why figure c is a circle.  

The circle is a classic figure which is perceived in its entirety. One does not look 
at the “parts” of the circle and put them together. The center is often not even 
marked. The only variance between examples of circles is their radii, the distance 
between the center and the points on the circle. Thus, if we talked about intuitive 
and nonintuitve examples of triangles, this dimension, would not apply to circles.  

On the other hand, among non-circles, there is a wide variety. Look back at the 
non-circles in Figure 9. How do they differ from each other? Are some intuitive 
non-examples of circles, immediately recognized as such by children?  

We have already seen that when a child can name a figure, he places it into one 
category, simultaneously excluding it from another category. Thus, the triangle 
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may be considered an intuitive nonexample of a circle. In addition, figures d, e, and 
g (a “crescent”, a “sun”, and an open “circle” respectively) were readily identified 
as non-circles. Regarding the crescent, children either pointed to the two points or 
simply claimed that the figure was a “moon” and therefore was not a circle. This 
second reason may be problematic. At times, the moon may appear as a full circle 
and not as a crescernt. In general, although we have not defined for children what a 
circle is, we may still strive for them to recognize and name attributes which are 
contradictive to circles. This indeed was the case for the open “circle” – all three 
children pointed to its openness when stating that it was not a circle. Regarding the 
sun, children either pointed to the many vertices or the lines.  

When explaining why the triangle was not a circle, two of the children said it 
was not a circle, “because it has vertices.” However, Yael claimed, “It is not a 
circle because it has three vertices and three sides and … but it’s closed.” Yael is 
referring to her working definition of a triangle. In essence, she is explaining why 
the figure is a triangle, which is not the same as explaining why the figure is not a 
circle. It could be that Yael, by explaining why this figure is a triangle, is claiming 
that if a figure is one shape then it may not be another. This is problematic when it 
comes to, for example, a square, which is not only a square but also a rectangle. 
Thus, claiming that a figure is one shape does not exclude it also from being 
another shape. Knowing that the shape is a triangle is different from knowing that a 
shape with vertices and sides cannot be a circle.  

What is the difference between Yael’s explanation and that of the other two 
children? Just as it is important to teach children that an example must uphold all 
of the critical attributes of that concept it is important to teach them that if even 
only one of the critical attributes of that concept is not upheld, the figure is not an 
example of that concept. In other words, if a figure has any vertices at all, then it is 
not a circle. It does not matter how many vertices it has. Notice how Yael pauses 
before she comments that the triangle is closed. She began by contrasting the 
triangle with the circle. The triangle has three vertices and three sides. It is possible 
that she pauses as she realizes that although the triangle is closed so is the circle. 
Does she realize at that point that her explanation was not focused on why the 
figure was not a circle but rather on why the figure is a triangle? Perhaps, for a 
moment, she is not sure if the figures are not the same; after all, they do have 
something in common. 

Although the decagon and triangle are both polygons, none of the children 
claimed that the triangle was a circle while a few did claim that the decagon was a 
circle. Perhaps, as with the “bonfire” triangle-like figure in the previous section, 
children zoomed out, merging the sides of the decagon into a continuous curved 
line. Most children could not explain why they claimed the decagon was a circle. 
Pam, on the other hand, explained, “it’s like when children join hands in a circle.”  

The most challenging figure for the children was the spiral. Regarding the spiral, 
children’s identifications as well as reasoning were mixed: 
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Roy: It is a circle. (He traces the figure with his finger.)  
Molly: It is a circle but it’s open. It’s not a circle because it’s open. 
Gila: It’s not a circle because it’s not closed. 
Jake: It is a circle because it’s round. 

Roy’s explanation consists of tracing the figure with his finger. Perhaps he, like 
Jake, is focusing on the roundness of the spiral. Jake states that the spiral is a circle 
because it’s round. However, roundness is not a term well-defined. The ellipse may 
also be considered round. Gila immediately notices that this figure is not closed 
and thus cannot be a circle. Molly, on the other hand, fluctuates. At first she claims 
that the spiral is a circle even thought it is open. However, on second thought, she 
concludes that if the figure is open, it may not be a circle. We would conclude that 
the spiral is a non-intuitive non-circle.  
 

 Figure 2. One possible way to categorize non-circles. 

In general, when considering nonexamples of circles, we suggest the following 
way to sort out the many varieties (see Figure 2). We begin by differentiating 
between polygons and non-polygons. Polygons cannot be circles because by 
definition they have sides and vertices, which are not attributes of the circle. 
Among non-polygons, we may separate between open and closed figures. Open 
figures may not be circles. Among closed figures, if the figure is made up of both 
curved and straight lines, it cannot be a circle. Thus far, we have referred to 
attributes which the children may recognize from learning about triangles. We now 
move on to attributes less familiar to children who had only learnt about triangles 
and other polygons. Closed figures may consist of one continuous curved line or 
they may consist of a broken curved line. A circle must consist of a continuous 
curved line. Finally, among closed figures consisting of one continuous curved 
line, non-circles are those which do not have a center point which is equidistant 
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from all points on the curve. It is the last two attributes which we believe that 
children at this age may not grasp. 

When we had previously discussed learning and teaching triangles, we sorted 
figures along two dimensions: a psycho-didactical dimension, as well as a 
mathematical dimension. Above, our categorization of non-circles was made only 
along mathematical dimensions. It remains a question as to which non-circles 
might be intuitively recognized as such. If children have already learned about and 
know the names of various polygons, then those polygons may be intuitively 
recognized as non-examples of circles. On the other hand, if children have only 
learned about triangles and squares, then a decagon, for example, may not be an 
intuitive nonexample of a circle as the multiple lines may begin to resemble a 
curve.  

Not being able to form a verbal working definition of a circle for children leads 
to difficulties which were not encountered with triangles, pentagons, and hexagons. 
If the child cannot refer to a working definition then it is almost impossible for him 
or her to explain why a figure is a circle. Among nonexamples, some may be 
explained by pointing to an attribute which contradicts the existence of a circle but 
many cannot be explained in this manner. This dilemma led us to believe that in 
the case of circles, we should focus on strengthening the concept image of circles 
without referring to any definition.  





THINKING ABOUT OTHER SHAPES 

 
 
 
 
In concluding this part, we ask you to consider how the section on developing 
children’s conception of triangles may be applied to developing children’s 
conception of pentagons or hexagons. What might be an appropriate working 
definition of a pentagon? What examples of pentagons would you present to 
children and which nonexamples would you present? In our work with children we 
most often begin with introducing children to the concept of a triangle. We have 
found that children are responsive to our efforts and enjoy “playing” with and 
learning about triangles, a figure which seems to be familiar to them. It is only after 
children have come to accept that some attributes of a triangle are critical and 
others are not, that we begin to work on pentagons. As Ken, a five-year old boy 
commented when describing the pentagon, “it’s like a triangle but is has five.”  

You may have noticed that quadrilaterals were not discussed in this chapter. In 
the beginning of this part of the book we reviewed theories of children’s 
development of geometrical concepts and reasoning including the difficulties 
which may arise along the way. One of these difficulties includes grasping a 
hierarchical structure. Young children may find it hard to recognize that a square 
belongs to the group of rectangles which in turn belongs to the group of 
parallelograms which in turns belongs to the group of quadrilaterals. Complicating 
matters even further is the issue of naming. How can one shape have two different 
names? These questions did not arise when discussing other polygons. A triangle 
with equal sides and equal angles is called an equilateral triangle. For one, the 
name “equilateral triangle” evokes the category to which it belongs; it consists of 
two words, an adjective which is combined to the noun it is describing. Thus, even 
if we were to introduce children to the term equilateral triangle, it would be less 
confusing than introducing a totally new name for this figure. In addition, a 
definition of a rectangle or a square would have to include concepts such as equal 
distance or angles, which may be very complicated for young children to grasp. 
Perhaps, we may encourage children to widen their concept image of squares and 
rectangles to include those with various orientations without relating specifically to 
the concept definitions. We are left with many questions regarding quadrilaterals.  

After considering how geometrical concepts may be developed among young 
children we are ready to consider how theories reviewed in this chapter may be 
applied when actually engaging children with geometrical tasks. This is the focus 
of the next part of this book.   





PART 2 

ENGAGING YOUNG CHILDREN WITH 
GEOMETRICAL TASKS 

Consider the following scenario: Rita, the kindergarten teacher, places in a bin 
several cutouts of many different shapes – triangles, squares, circles, pentagons, 
hexagons – in a variety of colors and sizes. She assigns two five-year olds the task 
of pulling out all of the triangles. In a different corner of the classroom, several 
children are working individually on tracing the outline of different geometric 
shapes. In the blocks corner, a group of children are building castles. Many of the 
blocks are in fact three-dimensional geometrical figures such as cubes and 
cylinders. What are the differences between these activities? What are the 
similarities? What knowledge related to geometry may the children be learning 
from the different tasks in which they are involved? 

Part One of this book was dedicated to studying preschool children’s 
development of geometrical concepts. While children may certainly acquire 
geometric knowledge from their everyday lives, with support and instruction, 
geometric development may progress further (van Hiele, 1958). What kinds of 
tasks may we implement with kindergarten children in order to help them along 
with this development? Consider again the three activities described above. As 
children engage in the above tasks, what messages may they be receiving regarding 
geometry in particular and mathematics in general?  

Students spend much of their time in the kindergarten classroom, and later on in 
the mathematics classroom, working on tasks. These tasks often mediate between 
the teacher and students, conveying “messages about what mathematics is and 
what doing mathematics entails” (Styliandes & Styliandes, 2008, p. 859). In Part 
Two of this book, we focus on geometrical tasks implemented with young children. 
The first chapter offers theoretical background regarding mathematical tasks in 
general and geometrical tasks specifically. In the second chapter we describe two 
geometrical tasks that may be implemented with children in preschool, possible 
scenarios that may occur when implementing these tasks, and results from studies 
in which children engaged in these tasks.  

The third chapter in this part presents a variety of tasks which teachers reported 
implementing in their preschool classes. 
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CHAPTER 4 

MATHEMATICAL AND GEOMETRICAL TASKS: 
THEORIES AND RESEARCH 

As we stated in the beginning of this book, there is a need at the beginning of any 
dialogue to establish a common language and a common background between 
participants. This chapter intends to fulfill that purpose by providing the 
terminology and theory on which the others chapters in this part of the book rest. It 
begins by taking a look at academic tasks in general and moves on to mathematical 
tasks in particular. What are the elements of a task? What principles guide their 
design? How are they implemented in the mathematics classroom? We then review 
curricular guidelines and research related to geometrical tasks. What kinds of tasks 
are suggested by various guidelines and what kinds of tasks have been 
implemented in the past? What were the aims of these tasks? Which of these tasks 
were implemented with young children? 

4.1 ACADEMIC AND MATHEMATICAL TASKS 

Our discussion of mathematical tasks begins with a general analysis of academic 
tasks. From various literature regarding academic tasks, we surmise that academic 
tasks are those tasks implemented in a classroom setting with the aim of promoting 
subject matter knowledge among the students. In this book our setting is the 
kindergarten classroom. While children most certainly learn a great deal from 
periods of free play, in this book we focus on the tasks that kindergarten teachers 
implement with the children in their class in order to promote particular 
knowledge. Thus, the first task described in the introduction above, pulling out all 
of the triangles from a bin containing a variety of figures, may be considered an 
academic task. As we continue to discuss academic and, later on, mathematical 
tasks, it may help to keep this task in mind. 

What comprises an academic task? According to Doyle (1983, 1988), academic 
tasks are composed of four interdependent elements: products, resources, 
operations, and accountability. In general, students are expected to generate a 
product (solution to a problem, oral responses in class) by using the resources 
made available by the task or problem (textbooks, notes, worked out examples) and 
by operating with these resources (remembering previous lessons, applying 
appropriate rules, formulating algorithms) taking into consideration accountability 
of the task (importance of the task in the general classroom scheme). What would 
be the product of the “pull out all the triangles” task? The intended end product is a 
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pile of cutout triangles and a bin full of figures that does not contain a single 
triangle. What resources do the children have to work with? The answer to this 
question may depend on the point in time that this task is offered. For example, if 
the teacher gives this task as an introduction to learning triangles, then the 
resources available to the child might stem from outside of the kindergarten, for 
example from his home environment. On the other hand, if the teacher has already 
introduced triangles to the children, and if the teacher has hung up in the classroom 
drawings of various triangles, then the children working on this task might well 
refer to other known triangles as they solve the task at hand.  

 

 

 

 

 

 

 

 

Figure 1. (Translated from the Hebrew) Geometry in our kindergarten: Quadrilaterals. 

How does the child operate with these resources? Perhaps, as discussed in the 
first part of this book, the child has learned an appropriate working definition for a 
triangle that he or she may refer to. A definition such as, a triangle is a closed 
figure with three pointy vertices and three straight sides, may serve as a resource 
for checking the various cutouts in order to discern if a cutout meets the necessary 
criteria. Regarding the importance of the task in the general classroom scheme, this 
is very much up to the kindergarten teacher. Will the teacher check to see if the 
task was completed satisfactorily? Will the children implementing the task feel that 
they have accomplished an important assignment?  

Doyle’s decomposition of academic tasks has been used in several studies to 
analyze mathematical tasks. For example, Stein, Grover and Henningsen (1996) 
referred to Doyle’s task analysis when describing mathematical tasks used in 
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reform classrooms. However, unlike Doyle who referred to short succinct tasks, 
their conception of a mathematical task encompassed a longer period of duration, 
such that the student was able to focus and develop a specific mathematical idea. A 
task was said to continue as long as the underlying mathematical idea did not 
change. Thus, if the task of pulling out all of the triangles from a bin is followed by 
explaining why each of the cutouts is indeed a triangle, and perhaps this is 
followed by tracing the cutout triangles, then the task only begins with pulling out 
triangles and doesn’t end until the child has traced each triangle. The task may 
even continue on if the child then continues to color in her drawing of the triangle.  

Herbst (2003) adapted Doyle’s four task components to investigate a teacher’s 
management of the use of novel tasks in teaching mathematics. The four 
components were used to investigate: (a) the product expected of the students as 
indicated by the teacher, (b) the representations given as resources, (c) the 
conceptual actions used by the students, and (d) the way in which work on the task 
related to the customary obligations of the teacher and students. Again, we may 
relate what Herbst (2003) investigated to our kindergarten triangles task. Herbst 
considered different representations which served as resources. Although different 
representations of a concept may not necessarily be the same thing as different 
examples of a concept, we may consider different examples of triangles as 
resources, such as prototypical triangles, triangles with different orientations, and 
triangles which are non-intuitive. We may also consider as a resource nonexamples 
of triangles and then discern between intuitive and nonintutive nonexamples (as 
discussed in the first part of this book). Stylianides and Stylianides (2008) used 
Doyle’s decomposition to study the implementation of mathematical tasks 
embedded in real-life contexts by comparing these elements at different points of 
the implementation. We might relate this to our “pull out the triangles” task by 
asking the following question: what resources does the child turn to at different 
points of implementation? To begin with, the child may use everyday contexts as a 
resource and thus pull out all triangles which resemble “the roof of a house”. After 
this phase is completed, other resources may be called upon. Are there drawing of 
triangles in the near vicinity? Will the child turn to the teacher or to other children 
for help? At what point?  

Up until this point, we have only referred to the “pull out the triangle” task. 
However, we may begin to ponder the other tasks mentioned in the beginning of 
this chapter. What types of blocks are available in the block corner? What types of 
shapes are the children asked to trace? These shapes and blocks may serve as 
resources as children learn about geometrical figures. What would be the product 
of building with blocks? Does the activity end with a tall tower? A different 
product might be produced depending on if the child chooses to build only with 
cylinders or only with cubes. We continue to refer to these tasks in the following 
sections.  

As shown above, mathematical tasks may have similar components to other 
academic tasks. Then what differentiates mathematical tasks from academic tasks? 
Is it only the mathematical context of the task? In the next section we focus on the 
uniqueness of mathematical tasks, beginning with their design.  
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4.2 DESIGNING MATHEMATICAL TASKS 

Bettina designed a group task for the children in her kindergarten class related to 
three-dimensional solids. In advance she prepared an assortment of geometric 
solids consisting of two cylinders taken from the set of blocks in the block corner, 
two different size balls, three cubes made from different materials, a hard plastic 4-
sided pyramid, and a hard plastic cone. Without the children seeing, she placed one 
of these solids inside a brown paper bag and each child, in turn, was to place his or 
her hand in the bag, feel the solid, and tell which one was in the bag.  

What were Bettina’s considerations when she was designing this task? If you 
were assigned to implement this task with kindergarten children, how would you 
interpret the task? The first step when designing a mathematical task is to 
differentiate between the actual task and the mathematical activity which it is 
meant to promote. In the above example, the task is to come up with the name of 
the solid hiding inside the bag. The mathematical activity, however, concerns more 
than identifying a solid by name. It includes discerning critical attributes of solids 
such as the number of faces or the absence of any base. Watson and Mason (2007) 
differentiated between “the task as conceived by the author, as interpreted and 
intended by the teacher (if she is not the author), and as interpreted and constructed 
by the learner” (p. 206). That is, the teacher presents a task to the students that she 
may or may not have designed, sets the rules for engagement, and has in mind a set 
of goals which are to be achieved by the students engaging in the task. 
Mathematical activity is what (hopefully) occurs as students engage in the task. 
This activity may take the form of working on the assigned task individually or 
discussing issues that arise from the task with the teacher or with other students.  

Watson and Mason (2007) further refined this idea by referring to the explicit or 
outer task as the specified or undertaken task whereas the implicit task is “what it 
affords of mathematical themes, concepts, theorems, connections to other topics 
and techniques, multiplicity of approaches, interpretations and representations” (p. 
206). The task described above affords the teacher to discuss with the children 
general geometrical themes such as the necessity to use critical attributes when 
identifying examples of geometric figures. It affords the teacher the opportunity to 
relate three-dimensional solids to two-dimensional shapes and clarify the 
differences. It also affords the opportunity for children to realize that identifying a 
figure is not dependent on how it “stands”. That is, even if the cone is not standing 
on its base, if it is in a bag and can be rotated in different directions, it remains a 
cone.  

In addition to the affordances of a task, the designer must also consider its 
constraints, how the task may limit wider possibilities. What may be lost by 
placing the solids in a paper bag? What may be given up by not including non-
geometric solids in this task? This is not to say that constraints are necessarily a 
negative. Constraints may serve to focus the student on the mathematics intended 
by the teacher, thus enhancing the process of concept formation (Watson & 
Sullivan, 2008). The affordances and constraints of a task may also be related to 
the interactional norms that have been developed between the teacher and students 
regarding engagement with tasks. 
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It is important to recall that the student is unaware of the implicit task. The 
student is also less knowledgeable of the mathematics than the task designer or 
teacher. Thus, the task designer must be aware of two perspectives: that of the 
observers’ point of view and that of the actor’s point of view (Figueiredo, van 
Galen, & Gravemeijer, 2009). The observer’s point of view is that of the designer 
or teacher who, besides knowing the mathematics inherent to the task, has an 
understanding of the context and its limitations. Yet, the designer must place him 
or herself in the role of the student. This is the actor’s point of view. Taking this 
point of view requires the designer to anticipate the different ways a student may 
interpret the task, which may be very different than the way it was intended to be 
interpreted. For example, when working on mathematical problems situated in real-
life contexts, what is real for one student may not be for another. In our case, a 
child who associates a cone with an ice-cream cone or a clown’s hat may perceive 
cones as being hollow receptacles which can be filled up. It is up to the designer, as 
well as the teacher implementing the task, to take this into consideration. It also 
means taking into account students’ current knowledge and the hypothetical 
learning processes of the student (Simon & Tzur, 2004). Have children learned 
about triangles before engaging in a task which includes pyramids? In this light, 
mathematical tasks become tools for promoting the learning of mathematical 
concepts and are thus a key part of instruction. 

Task designs are often based on different ways of conceptualizing mathematics. 
For example, mathematics may be viewed as a complex, but stable, set of ideas and 
theories which students come to understand by learning different mathematical 
topics. On the other hand, students bring to the classroom a variety of experiences 
related to mathematics which introduces creativity as well as spontaneity to the 
classroom. Krainer (1993) described this dilemma in mathematics instruction as the 
security versus insecurity dilemma. This dilemma gives rise to the need for tasks, 
including tasks in preschool, which will provide a secure path to the learning of 
concepts as well as less secure tasks which allow for investigation and discovery 
on the part of the student. Tasks which provide both security and insecurity may be 
called powerful tasks. They are characterized by two pairs of properties: 

1a) Team spirit: this property means that tasks should be well interconnected 
with other tasks. The “horizontal” connection of tasks can be seen as a 
contribution to the security of mathematics course. 
b) Self-dynamics: This property means that tasks facilitate the generation of 
further interesting questions. The “vertical” extension of tasks to open 
situations can be seen as a contribution to the insecurity of mathematics 
course. 
2a) High level of acting: This property refers to the initiation of active 
processes of concept formation which are accompanied by relevant (“concept 
generating”) actions. 
b) High level of reflecting: This property implies that acting and reflecting 
should always be seen as closely linked. An important aspect of reflection 
refers to further questions from the learners (which in their turn could lead to 
new actions). (Krainer, 1993, p. 68) 



CHAPTER 4 

52 

Taken together, tasks with these properties embody the security versus insecurity 
dilemma combining acting with reflecting allowing students to relate new ideas to 
other concepts. 

Do geometrical tasks in the kindergarten also reflect the security versus 
insecurity dilemma? The children in Nadine’s kindergarten have learned to 
distinguish triangles from non-triangles by checking if the figure is closed, has 
three pointy vertices, and three straight lines. The children have also been 
introduced to non-square quadrilaterals by comparing the attributes of these 
quadrilaterals to triangles. Like the triangle, the quadrilateral is closed, has pointy 
vertices and straight lines but instead of three vertices and three lines it has four 
vertices and four lines. One child is then given the following task: From an 
assortment of geometrical figures, including triangles, non-square quadrilaterals, 
squares, pentagons, hexagons, and circles, pull out all of the quadrilaterals. What 
elements of this task give the child a secure feeling? How is this task connected to 
previous mathematical concepts learned in the kindergarten? What elements give 
the child an insecure feeling? What new questions may result from this task? On 
the one hand, the child has practiced and feels comfortable with the process of 
counting vertices and sides and identifying closed figures based on this count. This 
gives the child a secure feeling. On the other hand, will the child accept a square as 
a quadrilateral? The concept image of a square is often formed before children 
reach kindergarten (Clements, Swaminathan, Hannibal, & Sarama, 1999) and thus 
may not trigger the child to count its vertices and squares. Furthermore, children 
who can name the square may not accept that it can have a second name and that it 
also belongs to the category of quadrilaterals (Waxman, 1999). Thus, this activity 
requires a high level of reflecting and includes elements of insecurity.  

The principles of task design are not only based on how one conceptualizes 
mathematics. Swan (2007) claimed that designers also take into consideration the 
values and purposes of learning mathematics and the mechanisms by which that 
learning takes place. His own task designs were based on five distinct purposes for 
learning mathematics: developing fluency when recalling facts and performing 
skills, interpreting concepts and representations, developing strategies for 
investigation and problem solving, awareness of the nature and value of the 
educational system, and an appreciation of the power of mathematics in society. He 
also incorporated into his tasks a social constructivist theory of learning (Swan, 
2008). In this spirit, we may ask ourselves: What is the purpose of learning 
geometry in general and what is the purpose of learning geometry in kindergarten? 
If one of our answers to these questions relates to developing spatial sense, then we 
may provide tasks in which children need to manipulate and rotate geometrical 
figures to solve a puzzle. If another purpose of learning geometry in kindergarten is 
to develop children’s deductive reasoning skills and to help children progress along 
the van Hiele levels of geometric reasoning, then we may design tasks where 
children are encouraged to see the relationships between different attributes of a 
geometrical figure.  

Swan (2008) designed five task ‘types’ that encourage concept development by 
promoting distinct ways of thinking and learning: classifying mathematical objects, 
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interpreting multiple representation, evaluating mathematical statements, creating 
problems, and analyzing reasoning and solutions. For example, a task which entails 
classifying mathematical objects may include three algebraic expressions where the 
student is asked to write why each expression may be considered different from the 
other two. Similarly, in the “pull out all the triangles” task, children could be 
encouraged to first explain how the cutouts they pulled out from the bin are 
different from those they left in the bin. Children could then be encouraged to 
classify the pulled out triangles in different ways. Other children may then be 
requested to evaluate their friend’s classifications of the figures. 

Designing tasks that meet the needs of conceptually oriented instruction was 
also discussed by Silver, Mesa, Morris, Star, and Benken (2009). In order to 
describe tasks that encouraged conceptual development they focused on the task’s 
mathematical and pedagogical features. Mathematical features include not only the 
mathematical topics of the task but the mathematical cognitive demands inherent in 
the task. Low cognitive demand tasks require students to recall and remember facts 
or use routine applications of known procedures. In the kindergarten, this may 
consist of having children repeat again and again the critical attributes of a triangle 
(not that this is an activity which we recommend). High cognitive demand tasks 
require students to analyze, create, or evaluate facts, procedures, and concepts or to 
engage in metacognitive activity. In the kindergarten, we may consider a task 
which encourages students to raise their own geometrical conjectures or evaluate 
their friends’ conjectures and justifications. For example, in the “guess which solid 
is hiding in the paper bag” task, a child may not only say out loud which solid he 
thinks is in the bag but may describe what he feels to his friends in the group and 
explain why the solid is, for example, a cone, and not a cylinder. 

The pedagogical features of a task refer to the organization and enactment of the 
task. For example, tasks which are designed to encourage collaboration and 
discourse among several students might be considered a pedagogical feature of a 
task that has the potential to encourage conceptually oriented learning. Other 
examples of pedagogical features that support such learning are tasks which call 
for the application of mathematics to other contexts, thereby connecting 
mathematics to the real world and tasks which call for using hands-on or 
technological tools. Pedagogically, we may also consider designing tasks that take 
advantage of geometric software to encourage collaborative investigations of 
geometrical properties. 

We have discussed designing tasks and are ready to discuss implementing tasks. 
Some tasks are designed by teachers. Many are not. Whether or not the designer 
and implementer are one and the same, implementation of a task does not 
necessarily follow the intention of the designer. That is, how a task is meant to be 
implemented is not necessarily what happens in actuality. This is discussed in the 
next section. 
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4.3 IMPLEMENTING MATHEMATICAL TASKS 

Donna and Nina teach in two different kindergartens located in the same 
neighborhood. Both teachers implement the same “pull out all the triangles” task 
using the same set of figures in their kindergartens. If we go and observe both 
teachers as they implement this task, can we expect to see more or less the same 
activity? How might you implement this task with kindergarten children?  

According to Styliandes and Styliandes (2008), the implementation of tasks by 
teachers is mediated by the teachers’ beliefs, knowledge, and previous teaching 
experiences. For example, teachers with weak content knowledge may not always 
understand the educational goals of tasks and appreciate the mathematical 
appropriateness of students’ solutions. On the other hand, strong mathematical 
knowledge may not be enough to ensure the fidelity of a high-level task. In their 
study of a secondary mathematics teacher Styliandes and Styliandes found that 
even though the teacher had the necessary mathematics knowledge to implement a 
high-level task, the custom or norms of the classroom hindered implementation of 
the task at the high level it was designed for. Similarly, Watson and Sullivan 
(2008) pointed out that most teachers need to adapt their teaching customs to the 
school’s cultural practices. Thus a task designed to foster collaborative 
investigation may not be implemented with fidelity in a school where ‘chalk-and-
talk’ teachers’ methods are the norm. Eisenmann and Even (2009) also found that 
implementation of a task may be related to classroom culture. In their investigation 
of one teacher who taught seventh grade algebra in two different schools, they 
found that even when the same task was implemented by the same teacher, in one 
class the task was enacted as a global/meta-level activity but in the second class it 
was not. Several possible reasons were offered for this difference. First, in one 
school, the teacher was more autonomous and was allowed the freedom to spend 
more time on tasks of her choice. This was not so in the second school which had a 
more rigorous timetable. Also, in the first school children were used to working on 
tasks in small groups and thus used their time more productively, enabling them to 
reach the meta-level of activity inherent in the task. Finally, the culture of the first 
school was to continuously strive for excellence so that teachers were encouraged 
to challenge students and used the tasks given to them to reach higher levels of 
thinking. 

In a similar manner, the culture of the kindergarten class and the teacher’s 
knowledge and beliefs might influence the way in which a task is implemented. 
For example, is geometry seen as a “by-the-way” subject to be learned while taking 
part in “natural” play or is it also part of teacher-directed tasks? Is whole class time 
spent on story telling or is it also spent on discussing mathematics and geometry? 
Is mathematics and geometry something “to do” or is it also something “to be 
discussed”? On the one hand, the “pull out all the triangles” task may be seen as 
something “to do”. The child must look through the bin and physically pull out all 
of the triangles. On the other hand, this same activity may take place in a group 
setting where the teacher passes around the bin and each child in his turn must pull 
out a triangle and explain to the group and to the teacher why the cutout is indeed a 
triangle. In this way, geometry becomes also something to be discussed.  
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Is it possible to insure the fidelity of implementing a task by providing the 
teachers with explicit instructions? Bieda (2009) observed middle school teachers 
and their students who participated in the Connected Mathematics Project. This 
curriculum incorporated proof-related tasks which the teachers could then 
implement. Yet, even though most teachers were observed implementing the tasks 
as written, not all students’ generalizations were followed up with justifications. 
When justifications were not forthcoming, many teachers did not provide necessary 
feedback, missing the opportunities provided by the situation to engage students in 
proving activities. In other words, even when the teachers were provided with tasks 
that encourage proving, implementing the proof part of the activity did not 
necessarily follow. Many kindergartens and preschools are supplied with 
mathematical and geometrical materials as well as instructions on how these 
materials may be used as tools to promote geometrical learning. And yet, are they 
used in the intended manner?  

It is common knowledge among professional development providers and 
researchers that supplying teachers with materials and instructions is not enough. 
As such, in several of our professional development sessions we spend time 
discussing, designing, and even enacting different tasks that may be implemented 
with various materials. Together with kindergarten teachers we evaluate these 
tasks, their mathematical aims, and possible outcomes.  

The following is an excerpt taken from a professional development session held 
with prekindergarten and kindergarten teachers which explicitly discussed the 
design and implementation of geometrical tasks in kindergarten. 

Instructor: What types of things will you put in the geometry corner? What 
types of materials? 

Joy: Most of the (commercial) games that we buy have many different 
shapes. There isn’t one game which focuses on just one shape. So, if you 
want to just work on triangles … 

Instructor: Maybe we have to construct and design our own tasks. 

Joy: Like finding lots of different triangles in different situations and sorting 
the triangles. We could use acute triangles and obtuse triangles. 

Instructor: What would be the advantages and disadvantages in sorting only 
triangles? Maybe the task should include lots of different figures and then the 
children can make two groups, one of triangles and one of non-triangles. For 
example, we can draw shapes that look like triangles but are missing one 
attribute, like an open triangle, like we discussed together in the lesson. If we 
use only triangles, then we won’t know if the children can differentiate 
between examples and nonexamples of triangles. 

Hanna: And when the child says that it’s like a triangle, you can ask him, but 
why isn’t it a triangle? 

Joy: And we can add a sign to the activity board, which says in big letters, 
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triangle, and draw next to it a triangle, and underneath it we can write the 
definition of a triangle and draw the different parts. (See Figure 2.) 
Instructor: We should also build the task so that each critical attribute gets 
attention. Emphasize the three as opposed to not three. Closed and not open. 
Hanna: So, let’s think of which examples and nonexamples we want to use 
and then we can all have a set to use in the class. 

 

Triangle       

Closed 

Three straight sides 

Three pointy vertices 

 

Figure 2. Activity board sign with icons representing the critical attributes of a triangle. 

The teachers begin by thinking of commercial materials they have seen in the 
past which may be used when engaging the children in geometrical tasks. These 
materials and games often include various prototypical shapes, such as equilateral 
triangles, squares, and circles. They are less likely to include non-intuitive 
examples and nonexamples of a shape. The teachers agree that if they want to 
focus on triangles, they should consider designing their own tasks and materials. 
The teachers, along with the instructor then discuss the affordances and constraints 
of a task which makes use of only examples as opposed to a task which takes into 
consideration also nonexamples. Joy considers how providing a guiding source 
may be helpful to the children. Hanna considers how the children may react and the 
necessity for children to understand that if a figure is “like” a triangle it is not the 
same as saying it “is” a triangle. She is also eager to build a set of figures together 
in the course which is exactly what they did during the rest of the lesson. Later in 
the week, when the instructor went to visit the different kindergartens, all of the 
teachers except for Joy displayed the different examples and nonexampels that 
children were sorting. Only Joy chose to place only examples of triangles on her 
activity board, demonstrating that even when a task is designed and discussed, 
implementation may differ from teacher to teacher. It could be that Joy felt that the 
children in her kindergarten, some who were known to be learning disabled, would 
not be able to handle examples and nonexamples at the same time.  
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The above scenario illustrates how professional development may be used to 
discuss some of the elements of task design and implementation. This is especially 
helpful when considering that many preschool teachers may have had little 
experience implementing mathematical tasks, including geometrical tasks, in the 
past. Professional development for preschool teachers is the focus of Part Three in 
this book.  

After having discussed various theoretical issues related to the design and 
implementation of mathematical, as well as geometrical tasks, we are now ready to 
take a critical look at some specific geometrical tasks.  

4.4 GEOMETRICAL TASKS FOR YOUNG CHILDREN: CURRICULA GUIDELINES 

In this section we describe a few geometrical tasks that are recommended by 
various mathematics curricula. In general, when curricula mention tasks, they do so 
in order to illustrate possible ways in which the child may engage in activities 
which may promote learning certain concepts. In these curricula, in general, one 
will not find a rigorous analysis of the tasks, their design, implementation, 
affordances, and constraints, as we detailed above. We bring you examples of tasks 
mentioned in different curricula in order to provide general ideas of tasks 
mentioned in various countries. As you review these tasks you may ask yourselves 
what mathematical activity is implicit in the task. What are the affordances and 
constraints of the task? What messages may the children receive regarding 
geometry when engaging in this task?  

Many curricula guidelines offer learning goals, what the final results should be, 
what children are supposed to know by a certain age. Yet, they do not offer specific 
examples of tasks. In England, the Statutory Framework for the Early Years 
Foundation Stage (EYFS) (2008) states that by the end of this stage (5 years of 
age) a child should be able to use “mathematical language to describe solid (3D) 
objects and flat (2D) shapes” (p. 47). In the accompanying non-statutory practice 
guidance, although specific tasks are not delineated, it is suggested that the 
practitioner provide an area where children can explore the properties of objects, 
plan opportunities for children to describe and compare shapes, and make books 
about shapes found in the environment. Taken together, these suggestions give the 
overall feeling that it is important to provide opportunities for learning geometrical 
concepts. However, providing opportunities does not necessarily translate into 
designing and implementing tasks. It would seem that it is up to the preschool 
teacher to design tasks or to choose tasks from curriculum materials advertised in 
catalogues and trade magazines.  

Some national guidelines offer samples of tasks, along with aims and guidelines, 
which may be implemented at different ages. The Israel National Mathematics 
Preschool Curriculum (INMPC, 2008) states that by the end of kindergarten 
children should be able to identify and name two- and three-dimensional figures as 
well as describe their attributes, such as the number of sides and vertices of a 
polygon. Alongside these aims, the curriculum suggests tasks that may be 
implemented with children. For example, they suggest that geometrical shapes may 
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be used in order to construct pictures. Another suggestion is for the teacher to 
present the child with a picture constructed from different geometrical figures. The 
child is then requested to color all the rectangles red, the triangles, blue, and the 
circles green. What might be the affordances and constraints of these tasks? 
Certainly, both of these tasks are constrained by the different shapes the teacher 
chooses to use in the task. What does it afford? Using shapes to construct pictures 
allows children to manipulate and rotate different figures, perhaps enlarging their 
concept image of geometrical shapes to include those with different orientations. 
Identifying shapes “hidden” in a picture may serve to refine children’s ability to 
see differences and similarities between different shapes. 

In the United States the Principles and Standards (NCTM, 2000) state that 
instructional programs from prekindergarten through grade 2 should enable all 
students to “recognize, name, build, draw, compare, and sort two- and three-
dimensional shapes, describe attributes and parts of two- and three-dimensional 
shapes, and investigate and predict the results of putting together and taking apart 
two- and three-dimensional shapes” (p. 97). Suggested examples of tasks that 
encourage these aims are also provided. One such task involves constructing 
triangles on a geoboard. Using one band per triangle, the child is requested to make 
many different sizes and shapes of triangles and explain to a friend the ways in 
which these triangles are different and how they are alike. The aims of this task are 
to explore the concept of triangle focusing on the properties of triangles while also 
paying attention to congruence. That the curriculum specifically adds that the child 
should explain his or her productions to a friend, tells us that this task is to be 
implemented in a group or at least with two children. It also lets us know that the 
mathematical activity involved in this task is more than constructing shapes. It 
includes explanations and communication of mathematical ideas such as 
congruence. This task may also promote the belief that geometry is something to 
do as well as something to discuss. 

In Australia, the New South Wales Mathematics K-6 Syllabus (2006) details 
over 10 explicit geometrical knowledge and skills aims for kindergarten children. 
These include sorting two- and three-dimensional shapes and objects according to 
features, identifying and naming circles, squares, triangles, and rectangles in 
different orientations, and recognizing and using informal names for three-
dimensional objects. In the accompanying sample units of works there are explicit 
examples of tasks. One such example recommends a task to be implemented by 
pairs of children. Each student in the pair is given an identical set of two-
dimensional shapes. Student A creates a flat design using the shapes and hides it 
from Student B. Student A must describe his design to Student B who then has to 
recreate it with his own shapes. In the manner in which this task is described, as 
well as the manner in which many tasks are described in different curricula, much 
is left up to the teacher to decide. What shapes will the teacher use? Will she 
supervise the task? Is the emphasis on doing or describing? What will be the 
balance between security and insecurity?   
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4.5 SUMMARY 

In this chapter we reviewed some elements of mathematical task design as well as 
geometrical tasks mentioned in curricula guidelines. Elements of this review are 
referred to in the upcoming chapter which discusses in depth two geometrical tasks 
which may be implemented with preschool children.  

  

 





CHAPTER 5 

IMPLEMENTING GEOMETRICAL TASKS – SOME 
POSSIBLE SCENARIOS 

Four 3-year old children are sitting around the table with the teacher-researcher. 
Each child, in turn, receives a card with a drawing of a shape on the card. The task 
for the child is to tell everyone if the shape on the card is or is not a triangle and 
why. 

Teacher to Pam: Here is your card. Is it (pointing to the drawing on the card) 
a triangle? 
Pam: Yes. 
Nadine: Where is my triangle? 
Teacher to Nadine: Soon, you’ll also get a shape. (Turning back to Pam the 
teacher continues.) It is a triangle. Correct. Why is it a triangle? 
Pam: Because it has three vertices. 
Teacher: Can you show them to me? 
Pam: (Pam points and counts each vertex.) One, two, three. 
Teacher: Fine. And what else does a triangle have? 
Nadine: Sides! 

On the one hand, the task above was designed to be implemented in a group so that 
the child has a chance to show his or her friends what was found and to explain this 
finding. On the other hand, Nadine is an impatient child. It is hard for her to wait 
for her turn. Or, maybe she is an enthusiastic child. She also wants to join in and 
the teacher at this point is only paying attention to Pam. Would you say that the 
above task was designed to be implemented with an individual or with a group? It 
is hard to tell. Would you implement this task with an individual or with a group? 
Perhaps it depends on the age of the children or on the specific circumstances of 
that day’s routine. Implementation of the same task with an individual has 
affordances and constraints different from implementation with a group. In the 
previous chapter we discussed, in theoretical terms, the elements of a task and what 
needs to be considered in its design. We focused on the task itself. In this chapter 
we focus on two geometrical tasks and their affordances and constraints. We 
present these tasks as if they are to be implemented with an individual, even though 
one can easily imagine, as the above scenario illustrates, the same tasks being 
implemented with a group. By approaching the task as if it is being implemented 
with an individual child we are able to focus on the nuances of the task, how the 
task may be used to investigate as well as promote a child’s geometrical 
knowledge.    

61 
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At the heart of each task are the examples and nonexamples presented to the 
children for various geometrical figures. In Part one of this book, we discussed in 
depth how examples and nonexample may contribute to concept formation. Here, 
we continue this discussion on a practical level, pointing out for each task how the 
examples and nonexmples, as well as the sequence of their presentation, may 
impact on concept formation.  

For each task, we begin by presenting the general mode of implementation. We 
then present possible scenarios depicting how the task may play out, including 
some results from our various studies where the tasks were implemented in 
preschools.  We summarize each task by pointing out the affordances and 
constraints of the task. 

 5.1 TASK ONE: ONE SHAPE AT A TIME  

Implementing the One Shape at a Time task 

Consider the following figure (see Figure 1). 

 

Figure 1. A prototypical triangle. 

Is it a triangle? Why? Now reflect on your answers. Did you answer the first 
question immediately or did you hesitate somewhat? Did you explain (to yourself) 
why the figure is a triangle? Did it seem silly to offer an explanation when the 
figure is so obviously a triangle? 

Consider the shape in Figure 2.  

 

 

Figure 2. Rounded corner “triangle”. 

Is it a triangle? Why? Now reflect on your answers. Did you answer the first 
question immediately or did you hesitate somewhat? Were you able to explain why 
this figure is not a triangle?  

It is quite possible that your answers to both the geometry questions as well as 
the reflection questions may be different if you are a mathematics education 
researcher, preschool teacher, or the parent of a preschooler. Now consider how a 
preschooler may answer the geometry questions. Would he be able to correctly 
identify the first figure as a triangle? How would he explain his identification? 
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Would he correctly identify the second figure as a non-triangle? How would he 
explain his identification? 

Task one, One Shape at a Time, is a task which focuses on two central elements 
of geometrical knowledge: identification and reasoning about geometrical figures. 
Cards are made up with a drawing of one figure per card. If we are currently 
concerned with triangles, then the figures will consist of various examples and 
nonexamples of triangles. If we are currently concerned with hexagons, then the 
figures will consist of various examples and nonexamples of hexagons. The child is 
then presented with one card at a time and asked: Is this a triangle? Why? (Or, if 
we are currently concerned with hexagons, then the child is asked: Is this a 
hexagon? Why?) The same questions are repeated for each card. Presented in this 
manner, the task allows the child to focus on one shape at a time, both in terms of 
his focus on the one drawn figure on the card and in terms of his focus on the one 
figure, triangle (or hexagon), in question. It also allows the teacher or researcher to 
listen carefully to the child’s response to each figure, noticing the immediacy or 
possible hesitancy in the child’s response, and proceed appropriately. 

Possible scenarios when implementing the One Shape at a Time task 

Let us consider the following scenarios. Nancy is the teacher in a preschool for 4-5 
year olds. She has previously presented to her children the following working 
definition of a triangle: A triangle is a closed figure with three pointy vertices and 
three straight sides. During whole class time, the children have learned to identify 
vertices, straight and curved lines, open and closed figures but they have not yet 
had time to practice using these concepts when identifying various triangles. 
  

 

 

 

 

 

 

Figure 3. An assortment of triangles and non-triangles chosen by Nancy 
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She wants to engage her young students in this task in order to widen their example 
space of triangles and encourage them to use critical attribute reasoning when 
identifying triangles. Towards this end, she has created a wide variety of cards with 
examples and nonexamples of triangles, one figure to a card. A sample of these 
figures is shown in Figure 3. 

Nancy has decided that at first, she will begin with the prototypical triangle (see 
Figure 4) and then, depending on the child’s response, she will decide what card to 
present next. What follows are three possible responses to the prototypical triangle 
from three different children. 

 

 

Figure 4. First triangle presented by Nancy. 

C1: Yes, it’s a triangle because it looks like a triangle. 
C2: Yes, it’s a triangle because it has vertices and straight sides. 
C3: Yes, it’s a triangle because it has three vertices. 

How to react to each child? What figure should Nancy present next to each child? 
C1 has correctly identified the prototypical triangle but has given a visual 
explanation. It seems that C1 is operating at the first van Hiele level of reasoning. 
The teacher may take the opportunity with this easily recognizable triangle to 
review the critical attributes of this and all triangles. And then, what figure should 
be presented next? Should it be an example or a nonexample? Let us say that we 
continue with an example. Which of the following examples shown in Figure 5 
might be presented next in order to encourage C1 to move beyond visual 
reasoning? 
 

 

 

Figure 5. Upside down prototypical triangle, isosceles triangle, scalene  
triangle, obtuse triangle. 

For sure, there is no one correct answer. Each choice will probably provide the 
teacher with additional knowledge regarding C1. Does C1’s example space include 
triangles of different orientations? Of different angle measures? Perhaps C1’s 
concept image includes a variety of triangles but the need to use attribute reasoning 
when identifying each triangle is not always felt. While there is no one correct 
answer, our choice would be the scalene triangle. This triangle is visually far 



IMPLEMENTING GEOMETRICAL TASKS 

65 

removed from the prototypical triangle. If the child does identify the scalene 
triangle correctly, it is unlikely that an accompanying explanation would be “it 
looks like a triangle”. It is more likely that because this triangle is far removed 
from the prototypical triangle, the child will turn towards the concept definition, 
checking for critical attributes that must be present. In other words, the child who 
is knowledgeable of critical attributes may well not feel the necessity to use them 
when identifying prototypical shapes but may be inclined to do so when identifying 
non-prototypical shapes. Studies have shown that the van Hiele levels are not 
necessarily discrete and that a child may operate at two different levels depending 
on the task, the context, and the examples and nonexamples presented (Burger & 
Shaughnessy, 1986; Clements & Battista, 2001). Thus, we may use this task and 
order the presentation of examples so as to encourage the child to use reasoning 
more appropriate for the second van Hiele level rather than the first. Did you 
choose a different example? Why? Perhaps for even younger children, you may 
feel that at first it is important to work on orientation. Perhaps you feel that a 
nonexample should be presented next. 

What nonexample may be presented to C1 after the response given? Consider 
the following two nonexamples in Figure 6: 

 

 

Figure 6: Square, rounded “triangle”. 

Which would you present next? Why? The square is intuitively recognized as a 
non-triangle (Tsamir, Tirosh, and Levenson, 2008) and thus may not lead the child 
to use an explanation incorporating critical attributes, even if C1 is aware of the 
critical attributes. In other words, presenting the square may not discern for the 
teacher if C1 is capable of reasoning with critical attributes. On the other hand, the 
rounded triangle looks like a triangle but is not. Therefore, if the child does not 
discern the critical attribute of pointed vertices and relies on visualizing the whole 
shape, this figure will be incorrectly identified as a triangle. However, if C1 is 
aware of the critical attributes of a triangle, the need for referring to them when 
identifying the prototypical triangle may not have arisen whereas at this point, 
when a figure which so closely resembles a triangle is presented, the need to refer 
to the critical attributes may be stronger.  

Now consider the response given by C2: “Yes, it’s a triangle because it has 
vertices and straight sides.” Unlike C1, this explanation is not based on whole 
shape recognition. Instead, C2 takes note of the vertices and straight lines. Does 
this explanation satisfy you? Would you accept this explanation as sufficient? How 
best to proceed? Will a different example help C2 take note of the number of 
vertices or the number of sides? We are not so sure. Perhaps. Instead, we would 
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choose to present C2 with a nonexample next. Consider the following nonexamples 
in Figure 7: 

 

 

 

Figure 7. Square, non-square quadrilateral, octagon.  

Which one would you present next to C2? Why? As we noted in the previous 
scenario, there is no one correct answer. In Book 1, Chapter 2, we discussed at 
length how to present different nonexamples in order to allow the child to focus on 
one critical attribute at a time. In this scenario, we are not sure if C2 is aware that 
threeness is critical but has just not mentioned it or if he is truly unaware of this 
critical attribute. Of course, the teacher may directly ask C2 to count the number of 
vertices. This may raise to the fore that the triangle has three vertices but will C2 
conclude from counting the vertices that having exactly three is a critical attribute? 
The beauty of this task is that it allows the teacher to use examples and 
nonexample to create cognitive dissonance in the child. C2 took note of the 
vertices and sides. By presenting him next with a square, which also has vertices 
but is intuitively recognized as a non-triangle, we raise the issue of the number of 
vertices. A square also has vertices and sides but it has four, and not three, vertices 
and sides. Of course, the square may be problematic because being an intuitive 
nonexample, the child may not feel the need to refer to attributes at all. Perhaps a 
non-square quadrilateral would be better. What about the octagon? The octagon 
has eight vertices. Perhaps this would be good a nonexample to follow the 
prototypical triangle? On the other hand, even though children may be capable of 
counting till eight, they may simply view eight as a lot or as many (Sarnecka & 
Gelman, 2004). In other words, the octagon may have too many vertices and 
therefore it may not create enough dissonance for the child to specifically note that 
the triangle has exactly three vertices and three sides. 

Have you considered the age of C2? Not all three-year old children may 
comprehend the principle of cardinality. For example, Baroody and Wilkins (1999) 
cited an episode where a three-year old successfully counted four stars on a card 
but when asked how many stars were on the card, she shrugged her shoulders and 
counted again from the beginning. Perhaps for such a young child, it would be 
helpful to count the number of vertices and the number of sides noting each time 
the number three. It may then be helpful to present the three-year old with 
additional examples of triangles noting over and over the number three and only 
then switch to polygons with four and possible five vertices.  

Consider now C3’s response to the prototypical triangle: “Yes, it’s a triangle 
because it has three vertices.” Does his explanation satisfy you? How might you 
continue? Would you show C3 another example or a nonexample? At this point, 
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we know that C3 is aware that a triangle has three vertices. Does C3 know that the 
triangle must also have three straight sides? Most young children are not aware of 
the relationship between sides and vertices, that three sides necessarily follow three 
vertices. Does C3 know that the triangle must have three and not four vertices? We 
suggest presenting one of the following nonexamples shown in Figure 8. Each of 
these nonexamples refutes a different critical attribute and may raise C3’s 
awareness of other critical attributes.  

 

 

Figure 8. rounded “triangle”, open “triangle”, “clown hat”, quadrilateral. 

The “rounded triangle” is missing vertices. Perhaps you feel that this 
nonexample is extraneous considering that C3 specifically mentioned three 
vertices. On the other hand, if we are not sure of C3’s conception of vertices, this 
nonexample may serve us well. Perhaps C3 is not bothered by the roundness of the 
corners. The other nonexamples raise different issues. The “open triangle” may 
remind C3 that a triangle must be a closed figure and the “clown hat” may remind 
C3 that sides must be straight. The quadrilateral has four and not three vertices and 
sides. On the other hand, you may want to know if C3 always refers to the vertices 
first or if it was just a coincidence. In that case, it may be interesting to follow the 
first example with more examples and investigate whether C3 offers the same 
explanation for each triangle, perhaps indicating that, for C3, the attribute of 
vertices is more dominant than other attributes.  

In the above section, we presented three different scenarios for how the task 
may play out. There are as many possible scenarios as there are children. Often the 
same task may be used to both promote as well as evaluate children’s knowledge. 
In the next section, we present results of a study which implemented this task at the 
end of the school year in order to assess kindergarten children’s knowledge of 
pentagons. As we shall see, implementing this task on a one-to-one basis with 
children also allowed us to investigate the relationship between children’s 
geometric knowledge and their monitoring behaviors.  

Results of a study: Is this a pentagon? Why? 

The children in this study had learned in preschools where the teachers had 
participated in our two-year professional development program Starting Right: 
Mathematics in Preschools. We discuss this program in more detail in Part Three 
of this book. However, at this point we note that the teachers spent a great deal of 
time during the year on extending children’s concept image of triangles. In 
addition, they introduced the children to a working definition of triangles such as 
that proposed in Part One of this book. Thus children were aware that triangles 
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must be closed and have three and only three straight lines and pointy vertices. 
Only after the teachers were satisfied that children were able to use attribute 
reasoning when identifying triangles, did they introduce the children to pentagons 
and later still, hexagons. Throughout the program, each teacher was personally 
accompanied by a member of the professional development staff who visited the 
preschool on a weekly basis, sitting with children and guiding the teacher in her 
endeavor to create a mathematically enriched environment for her children. The 
aim of the program was for all children to exhibit competency in all mathematical 
areas taught (such as geometry, numbers, and operations).  

The study we report on here took place towards the end of the school year with 
182 5-6 year old children in the year prior to their entering first grade. Each child 
was presented with six different shapes, one shape at a time, and asked to identify 
each of the shapes as a pentagon or a non-pentagon. The child was then requested 
to justify the identification. At times, children’s initial identifications remained 
unchanged and at times children’s final identifications differed from that of their 
initial identifications. What follows is a review of typical responses to one 
pentagon shape and to one non-pentagon shape (see Figure 9). Responses are 
categorized according to correctness of identification as well as the type of 
reasoning which accompanied children’s identification.  

 

Pentagon Non-pentagon 

Figure 9: Two shapes presented to children for the pentagon task.  

Correct initial and final identifications with critical attribute reasoning. Regarding 
the pentagon, children who identified this shape correctly often justified their 
identification by referring to critical attributes of the pentagon. 

C1: It has five vertices, it’s a closed shape, and it has five straight lines. 

Regarding the non-pentagon, some children who correctly identified this shape as a 
non-pentagon referred in their justifications to “curved” or “rounded” lines. One 
child justified his correct identification by saying, “It’s not (a pentagon) because it 
has two rounded sides … actually is has four rounded sides … it doesn’t matter.” 
This child assessed his justification “on line”. At first he noticed two rounded 
sides. Then he took a closer look and noticed four rounded lines. However, he 
realized immediately, that in fact it does not matter how many rounded sides the 
shape has, because even one is sufficient to nullify the shape as a pentagon. This 
child exhibited monitoring, not of his solution (which was correct) but of his 
justification. As he was justifying his conjecture, he monitored the correctness and 
perhaps quality of his justification. 

Regarding both shapes, some children first counted the vertices or sides and 
only then responded to the question of identification. Such children thought about 
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how to go about identifying the shape, acted on their plan, identified the shape and 
then justified their identification.  
Incorrect initial identification but correct final identification with critical attribute 
reasoning. Children who corrected their initial incorrect identifications, typically 
referred to the critical attributes of a pentagon in their justifications. Regarding the 
pentagon (see Figure 9): 

C2: It’s not a pentagon. Let’s check. (The child counts the vertices.) It is a 
pentagon because it has five sides and five vertices and it’s closed. 

C3: It’s not a pentagon. The line here points to here (referring to the 
concaveness of the pentagon). (The child counts the vertices.) It is a 
pentagon. 

C2 immediately went to check his conjecture, even before the researcher had a 
chance to ask him why he claimed the shape was not a pentagon. In other words, 
he initiated the monitoring (when he declared “let’s check” and counted the 
vertices) which in turn led to a correct identification based on a correct 
justification. C3 initially used a justification based on a non-critical attribute (the 
direction of the line). This justification was followed by monitoring (counting the 
vertices) which in turn led to a correct identification and an explanation based on 
properties and critical attributes. 

Regarding the non-pentagon (see Figure 9), one child claimed at first that this 
shape was a pentagon. When asked why he thought it was a pentagon, he 
proceeded to count the points and said, “Yes … uh … no. It has five vertices but 
it’s not straight.” One might think that the child changed his mind because the 
interviewer challenged him. However, in this kindergarten, asking children to 
explain their reasoning, regardless of whether an answer was correct or incorrect, 
was a norm previously established. Thus, it is more likely that the act of justifying 
the conjecture led to self-initiated monitoring.  
Incorrect initial and final identification with critical attribute reasoning. At 
times, children gave incorrect identifications along with critical attribute reasoning. 
For example, regarding the pentagon (See Figure 9): 

C4: It’s not a pentagon. It doesn’t have five sides. (There was no indication 
that the child had counted the sides.) 

It seems that C4 gave a verbal justification without carrying out any action. 
Although he gave a justification befitting his (incorrect) identification, the request 
for justification did not lead this child to monitor his response. He did not look 
back and was not aware of his mistake.  
Unchanging identifications (correct and incorrect) with visual reasoning. Not all 
children justified their identifications using the critical attributes of a pentagon. 
Regarding the pentagon: 

C5: It’s a pentagon because it looks like a pentagon. 

C6: It’s not a pentagon because it looks like a tooth.  
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C7: It’s not a pentagon because it doesn’t have the shape of a pentagon. 

Regarding the non-pentagon: 

C8: It’s not a pentagon because it looks like a circus (tent).  

C9: It’s not a pentagon because it’s not in the shape of a pentagon. 

The above children used visual reasoning in their justifications. Both C6 and C8 
embodied the rather abstract concept of a pentagon into a more familiar physical 
entity. C5, C7, and C9 have a concept image of a pentagon which does not fit the 
shape on the card. These justifications accompanied both correct and incorrect 
identifications and were not accompanied by monitoring.   

Some children gave justifications that were a mix of perceptual reasoning along 
with reasoning based on attributes. Regarding the non-pentagon: 

C10: It’s not a pentagon because it has five vertices but it doesn’t look like a 
pentagon.  

C10 seems to be in transition. Previously, he had correctly identified the pentagon 
noting only its five vertices. His justification regarding the non-pentagon takes note 
of the five points (they are not vertices as they do not connect straight lines), but 
disregards them because the shape “doesn’t look like a pentagon.” In other words, 
he realizes that the attribute of “pointy vertices” is worthy of notice but he may not 
have the knowledge or words to describe that the sides need to be straight lines. 
Instead, his final justification relies on his visual perception. In a sense, C10 
exhibits monitoring. He clearly has a strategy by which he checks if a shape is a 
pentagon (counting vertices) but “on line” rejects that reason in favor of relying on 
his mental image of what a pentagon should look like.   

Summarizing the One Shape at a Time task 

In summarizing this task we refer to Watson (2004) who discussed the affordances 
and constraints in mathematical tasks. The One-shape-at-a-time task affords the 
teacher and researcher flexibility in determining the course of interaction with the 
child and the ability to tailor the task to meet the needs of different children at 
different points in their development. For the learner, the One-shape-at-a-time task 
affords time to focus on one figure and examine it closely, time to review the 
working definition and check the critical attributes of the shape being discussed 
against the figure being presented. It also provides the learner with the opportunity 
to investigate a variety of examples and nonexamples and to use the working 
definition of the shape being discussed when explaining one’s identification.  

What are the constraints of this task? The examples and nonexamples used 
obviously constrain what may be learned from this task, what children may learn 
about triangles as well as what we may learn about children’s knowledge of the 
figure at hand. In addition, there is a certain repetitiveness to this task which may 
possibly constrain meaningful learning. Once a child has learned to explain that a 
figure is a triangle because it has 3 vertices, 3 sides, and is closed, he may use this 
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explanation repeatedly without thinking of what he is saying. When one task 
becomes routine it may be wise to move on to a different task. In the following 
section we present a different geometrical task which may be implemented with 
young children. 

5.2 TASK TWO: WHAT DO WE HAVE HERE? 

Implementing the What Do We Have Here? task 

Whereas the previous task setting presented the child with one shape at a time, this 
task presents the child with an assortment of figures all at once. We place before 
you the following shapes in Figure 10. Do you see a triangle? Yes? Point to it. Do 
you see another triangle? Yes? Point to it. Do you see another triangle? No? Do 
you see a quadrilateral? Yes? Point to it. No? Do you see a pentagon?  

 

 

 

 

 

Figure 10: An assortment of shapes. 

The What-Do-We-Have-Here? task challenges children to seek out a single 
shape among many figures presented at once. The teacher or researcher places a 
variety of figures in front of the child, chooses a shape to be identified, for example 
a triangle, and asks, “Is there a triangle here?” If the child answers yes, then the 
child is asked to point to the appropriate card without removing it or changing its 
position. The teacher or researcher then asks, “Is there another triangle here?” And 
again, the child is asked to point to it. This continues until the child indicates that 
there are no more triangles. The teacher may then move on to a different shape, and 
the same set of questions with the same procedure is repeated. 

There are several challenges for the child in this task. First, the child must deal 
with a variety of figures at once instead of focusing on one figure at a time. 
Depending on the age of the child, this can be very difficult. Adding to this 
difficulty is the teacher’s request to point to the shape and not remove it. In other 
words, the child cannot remove the figure and physically rotate it. Instead, the child 
must deal with a static picture. In addition, the identified figure remains among the 
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assortment, keeping the amount of figures static. Of course, an easier variation of 
this task would be to request that the child remove the identified shape from the 
assortment, thus decreasing the amount of figures to be reckoned with each time. 
On the other hand, if the child incorrectly identifies a shape and removes it, then 
that shape will be missing when it is sought out later on. These variables may be 
adjusted by the teacher or researcher according to each situation. An additional 
challenge is requesting the child to seek, for example a triangle, after he has 
already identified all the triangles. Most children learn, rather early on, that when 
the teacher requests something to be done, it can be done. Thus, asking the child to 
point to a triangle when he has already pointed to all of the triangles may cause 
him to hesitate. Yet, not all problems, including mathematical problems, have a 
solution. Therefore, it is important to establish a norm, as early as possible, 
whereby children may confidently claim that a problem has no solution. This task 
provides such an opportunity by continuing to ask for triangles, even after all the 
triangles have been identified. The teacher may also deliberately request a square, 
for example, when to begin with, no squares were placed among the assortment of 
figures.  

This brings us back to the variety of figures presented to the child at one time. 
How to choose the assortment? First, one needs to think about which geometrical 
figures will be the focus of this investigation. Will the teacher request the child to 
point out three different figures, say triangles, quadrilaterals, and pentagons? Or 
are the children at the stage when they can be asked to identify triangles, 
quadrilaterals, pentagons, hexagons, and circles? Perhaps for very young children, 
it is enough to present a variety of figures and ask the child to point out only the 
triangles. It also needs to be decided how many examples of each figure will be 
among the assortment of figures presented to the child. For example, we most 
likely would include at least one prototypical or intuitively recognized example for 
each figure and one less so. Regarding the nonexamples, we first consider that an 
example of a triangle is a nonexample of a pentagon. Thus, the examples we have 
chosen for the various figures, may also serve as nonexamples for other figures. 
We then might include other nonexamples which refute different critical attributes. 
On the other hand, if we include an “open triangle” then we may not feel the need 
to include an “open pentagon”. Finally, the total amount of figures displayed at 
once must be considered, especially in light of the young age of the children.   

Possible scenarios when implementing the What Do We Have Here? task 

Rachel presented the following 12 shapes (see Figure 11) to her preschool children. 
Notice how the figures are all examples of either a triangle, square, or circle. 
Consider for a moment what possible scenario might call for such an arrangement. 
What might be the ages of the preschool children? At what stage of their 
geometrical development might they be?  
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Figure 11:  Rachel shows these figures to her preschool children. The figures are in many 
different colors. 

Rachel is a preschool teacher for 3-year old children who has chosen to focus 
her attention on recognizing triangles, squares, and circles as well as naming these 
shapes. During circle time, she has presented the children with one shape at a time, 
focusing on expanding the children’s concept image to include shapes of various 
sizes, colors, and orientations. She would like at present to introduce her children 
to the critical attributes of a triangle but wishes first to assess how the children 
cope with many shapes at once. In consideration of the very young age of the 
children, she implements this task with a variation. Instead of having the child 
point to a figure, she requests the child to pick up the requested figure and hand it 
to the teacher. 

Rachel: Lily, can you hand me a triangle? 

Lily hands the teacher the isosceles triangle. 

Rachel: Can you hand me another triangle? 

Lily hands the teacher a right triangle. 

Rachel: Can you hand me another triangle? 

Lily hands her the upside down triangle. 

Rachel: Can you hand me another triangle? 

Lily hands her a square. 

At this point, the teacher is confused. It seemed as though Lily was doing really 
well. Why did she hand the teacher a square? Perhaps she does not recognize the 
scalene or obtuse triangles as triangles, but surely the prototypical triangle should 
be identified as a triangle. Perhaps, due to the multitude of figures, Lily has just 
missed the prototypical triangle. But if that’s the case, then why did Lily hand the 
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teacher a square? Does she not know the name square? And if she does not know 
the name for a square does that mean that Lily thinks that this may also be a 
triangle? Due to the multitude of questions, Rachel decides to not continue but to 
inquire of Lily why she handed her a square. 

Rachel: Lily, is this (holding up the square she received from Lily) a triangle? 

Lily: No, it’s a square. 

Rachel: Ok. Can you now give me another triangle? 

Lily hands the teacher the scalene triangle. 

Rachel continues on with the task and Lily correctly completes the entire task. 
What can we say about Lily? She correctly identified all of the figures, including 
the non-intuitive triangles and square. Why did Lily seemingly make the mistake 
described above? We are not sure. We are not even sure that the three-year old 
would be able to tell her teacher why she handed her a square even as she knew it 
was not the requested triangle. However, this scenario demonstrates how we cannot 
always judge a child’s knowledge based on one response and that, especially with 
young children who have not yet developed the habit of being “tested”, intervening 
in the middle of a task, even an assessment task, may be a necessity. This scenario 
also demonstrated how a task may be varied and adapted to fit the needs of the 
teacher and the children. In this case, the figures were all examples of previously 
learned shapes. Thus, the nonexamples of triangles were considered intuitively 
recognized as nonexamples. In addition, having the child hand the requested figure 
to the teacher, lessened the cognitive burden, disallowing the child to 
inappropriately choose a figure twice. On the other hand, the teacher continued to 
ask for triangles even when only squares and circles were left, underscoring the 
importance of teaching children at a very young age, that not all problems may 
have a solution. 

Karen teaches kindergarten children who will be entering first grade in the 
upcoming school year. During the year she has taught her children about circles, 
triangles, quadrilaterals, pentagons, and hexagons as well as the critical attributes 
of the above mentioned polygons. Towards the end of the year, she is interested in 
assessing her children’s knowledge regarding polygons. She has collected the 
following polygons and presents them to Tracy (see Figure 12).  

Karen begins her query with triangles, and then moves on to quadrilaterals, 
pentagons, and hexagons. Without hesitation, Tracy points to a different triangle 
each time Karen inquires if there is yet another triangle and replies that there are no 
more triangles after she has identified all of the triangles. When it comes to 
identifying quadrilaterals and pentagons it takes her a bit more time as she 
sometimes pauses to count vertices. Still, she identifies all of the quadrilaterals and 
pentagons. Karen then moves on to the hexagons. 
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Figure 12: A mix of 22 shapes. 

 
Karen (the teacher): Is there a hexagon here? 

Tracy: Yes. 

Karen: Can you point to it? 

Tracy points to a hexagon. 

Karen: Is there another hexagon here? 

Tracy: Yes. (Tracy points to a different hexagon.) 

Karen: Is there another hexagon? 

Tracy: Yes. (Tracy points to an octagon.) 

Karen: Is there another hexagon? 

Tracy: Yes. (Tracy points to the third hexagon.) 

Karen: Is there another hexagon? 

Tracy: Yes. (Tracy points to the second octagon.) 

Karen: Is there another hexagon? 

Tracy: No. 

What can we learn about Tracy? First, she identified correctly all of the triangles, 
quadrilaterals, and pentagons. Second, she did not point to any figures which were 
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open, had rounded corners, or curved sides. So, what happened when it came to 
identifying the hexagons? How come Tracy incorrectly pointed to octagons in 
addition to the hexagons? If she had pointed to all of the hexagons and only 
afterwards pointed to the octagons, we may have concluded that Tracy possibly 
does know that a hexagon must have six sides but felt that she must, at some time, 
point to all of the polygons. However, this was not the case. She did not “use up” 
the hexagons and then point to the octagons. It is possible that Tracy did not 
remember that a hexagon must have six and only six sides and thus included the 
octagons as well. On the other hand, Tracy did not pause once, after being asked to 
identify a hexagon, to count vertices. Did she not notice that the octagons have a 
different number of vertices than the hexagons? Perhaps having only two more 
vertices is not that big a difference and Tracy just figured that any polygon left 
must also be a sought after hexagon. Perhaps, since Tracy did not learn to name 
octagons, it did not occur to her that there were other polygons with more than six 
sides. Of course, in order to answer these questions, the teacher needs to 
investigate the matter further. What do you recommend Karen to do? Would 
teaching Tracy about octagons solve the problem?  

5.3 SUMMARY 

In this chapter we took a critical look at how a geometrical task may be 
implemented with one child at a time and how a task may be use to both promote 
knowledge as well as to assess knowledge. Implementing tasks with an individual 
child has many advantages. Among them, as was illustrated in this chapter, is the 
chance to provide individual feedback specifically tailored to a child. On the other 
hand, group activities or tasks provide for interaction, communication, and 
collective learning. Many tasks implemented with an individual may be adapted for 
group activity. In doing so, one ought to take into consideration what may be lost, 
as well as might be gained.  

Teachers are ultimately the ones who have the last say regarding which tasks 
will be implemented in the class as well as how these tasks will be implemented. In 
the next chapter we present a variety of tasks that were implemented by 
kindergarten teachers who had participated in our professional development 
program, Starting Right: Mathematics in the Preschools.  
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GEOMETRICAL TASKS IN PRESCHOOL: THE VOICE 
OF THE TEACHER 

 
After having discussed elements of task design, after having reviewed examples of 
tasks in national guidelines, after having analyzed in great depth two different 
geometrical tasks, we present in this chapter a variety of tasks which teachers 
reported implementing in their preschool classes. As you review these tasks, you 
may ask yourself: What are the affordances and constraints of each task? How may 
a task be varied to meet the needs of different children? Can the task be used to 
both promote and evaluate children’s knowledge? Would you implement such a 
task with young children? Why? 

6.1 EARLY PRESCHOOL 

Orna participated in our professional development course for preschool and 
kindergarten teachers teaching 4-6 year old children. She attended despite the fact 
that at the time of the course she was teaching 2-3 year olds in a private day care 
center. Throughout the course, Orna was aware that the children in her care may 
not be able to reach the same van Hiele levels of geometric reasoning as older 
children but nevertheless believed that early preparation would benefit even the 
youngest of her charges. At the end of the course, as did all of the teachers, Orna 
handed in to the instructors a summary of the mathematical tasks she implemented 
in her class as well as descriptions of children engaging in the task.  

Two of the tasks described by Orna aimed to teach the children about vertices 
and sides. For the first task, Orna used a ruler to draw a large triangle on a piece of 
construction paper. Each child received one such drawing. She then provided the 
children with small round gold stickers. The children’s task was to place one gold 
sticker on each vertex and then count how many stickers they had placed on the 
paper. For the second part of this task, Orna provided the children with small round 
orange stickers. The children’s task was to then place the orange stickers on the 
sides of the triangle. The choice of using two different colored stickers was not 
random. It allowed Orna to emphasize that both attributes of a triangle are 
important yet distinct. By counting the gold stickers, the attribute of three was 
emphasized. Orna described the children’s engagement as follows: 

The children worked enthusiastically. Each child place a gold sticker exactly 
on a vertex, except for Miri, who is the youngest child in the class and also 
the newest. It was a little difficult for them to place the stickers on the sides 
of the triangle. When I saw that Rachel was getting tired, I drew dots on the 
sides for her to place one circle on each dot. Shai got tired and walked away. 
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When Amy finished, she asked if she could fill in the triangle with extra gold 
stickers and I allowed her to do so. She was so proud of her creation that she 
went all around the classroom showing her triangle to everyone. 

 

Figure 1. Gold stickers on the vertices and orange stickers on the sides. 

 The second task was designed to be implemented during circle time. In 
preparation of this task, Orna had prepared various large cut outs of triangles made 
from corrugated plastic sheets. With all of the children sitting around in a circle, 
Orna placed these cutouts on the floor in the middle of the circle. The children’s 
task was to walk around the triangles, without stepping on them, to the beat of 
Orna’s tambourine. When the beat stopped, Orna called out either “vertices” or 
“sides” and the children’s task was to stand on either a vertex or side according to 
what Orna called out. Orna described the children’s engagement with this task:  

The children greatly enjoyed this task and knew to stand correctly either on a 
vertex or a side. Oren tried to put one foot on each vertex and one hand on 
the third vertex. This task also allowed the children to walk around the 
triangles, viewing them from different perspectives. Thus the children were 
able to expand their concept image of a triangle. 

Orna also designed a task utilizing the large three-dimensional solids she had in her 
“climbing corner” of the class. These solids were actually made out of a sponge 
material and were of the large variety that children could actually climb on. They 
included tall thin cylinders (where the height was much greater than the diameter), 
short fat cylinders (where the diameter was much greater than the height), 
triangular prisms, rectangular prisms, and cubes. The children’s task was to build a 
structure using the solids which Orna named. Orna describes the children as they 
engage in the task: 
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Figure 2: Standing on the vertices 

I began with cylinders. Amy said that she liked cylinders and went to collect 
all of the cylinders. She even took the flat pillow-like cylinder. Then I called 
out prisms and Ron went and got the rectangular prisms. Ortal said that she 
liked triangles and went and got all the triangular prisms. 

As Orna describes the tasks she implemented with young children, she not only 
details the materials used and the instructions necessary for implementing the task. 
She is sensitive to and notes the children’s difficulties as well as their joy and 
enthusiasm as they engage in the task. Small children are still developing their fine 
motor skills. Placing stickers on a straight line is tiring. Children at this age may 
also have difficulties enunciating complex syllables. Perhaps for this reason, it is 
Orna who calls out the words vertex and side as well as the names of the three-
dimensional figures. Perhaps Orna believes that at this age geometry is something 
to do and that discussing it might be too difficult.  

In the next section we describe additional tasks suggested by preschool teachers 
teaching 4-6 year old children. As noted above, many of the tasks were tried out 
during the year, assessed, and went through revisions as the teachers gained 
experience. It is worthy to note that some of the teachers described implementing 
identical tasks with their 4-6 year olds as Orna described above. This makes sense. 
The above tasks are by no means only suitable for very young children. We can 
imagine that 5 year olds may also learn to differentiate between vertices and sides 
by placing different color stickers on each attribute. Perhaps the fine motor skills of 
older children allow them to follow a straight line with more accuracy than a 3-
year old can. In the next section we describe additional tasks that teachers 
suggested implementing with 4-6 year old children.  

6.2 ADDITIONAL TASKS DESCRIBED BY PRESCHOOL TEACHERS 

Many of the tasks implemented by the teachers were first discussed during the 
course they attended together. For example, in one of the sessions, teachers 
discussed the difference between creating triangles and identifying triangles. If the 
task was to create a triangle, then concrete materials needed to be considered. 
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Ellen: Maybe we can have the children draw triangles or give them a cutout 
of a triangle and have them trace it. 

Instructor: It’s probably better to have children trace a cutout. It would be 
very difficult for them to draw a straight line on their own. 

Joy: Or the children can construct triangles from rubber-bands on a geo-
board. 

Instructor: What would be the advantages and disadvantages of using a 
material that bends and stretches? 

Joy: The line might end up curved. 

Instructor: Ok. So, it might be a problem because we want the lines to be 
straight. 

At the end of the professional development course, each teacher summarized the 
different geometrical tasks she had implemented in her class. In this section, we 
present a few of the tasks mentioned by different teachers. For each task, the 
teachers commented on whether it was meant to be implemented in a whole class 
setting, a small group gathering, or if it was meant for individual engagement. In 
addition, teachers thought of tasks to be implemented inside the classroom as well 
as outside in the yard.  

Fishing triangles – Ellen described this task as one which could be implemented 
by an individual or by a small group of children. Inside a box there are cutouts of 
examples and nonexamples of triangles. Each cutout has a magnet stuck on the 
reverse side. With the help of a magnetized “fishing rod” each child in his turn 
fishes out a figure, has to tell the group whether or not the figure is a triangle and 
why, and finally place it in either the pail of triangles or the pail of non-triangles. 
The children looking on have to approve of the action taken. Of course, this task 
may be played out with pentagons instead of triangles, and so on.  

At the heart of the fishing task is children’s ability to sort out examples from 
nonexamples of whichever figure is the current focus. Many of the teachers 
described similar tasks implemented with different materials. For example, instead 
of using cutouts, Hanna drew examples and nonexamples of triangles on cards. 
This afforded her the opportunity to include the nonexample of an “open triangle” 
which cannot be demonstrated using cutouts. Instead of magnets, Hanna placed 
Velcro tape on the backs of the cards. The task was then to sort the figures by 
placing all of the triangles under the triangle sign on the activity board and all of 
the non-triangles on the other side of the board under the not-a-triangle sign (see 
Figure 3). Hanna described this task as one which may be implemented by an 
individual child or by a pair of children. In the case of the individual, Hanna added 
that the task would include the child having to explain the sorting to the teacher. 
When implemented by a pair of children, the explaining would take place between 
the children.  

Creating a picture out of triangles – According to Ellen, the aim of this task was 
to expand children’s example space of triangles. The child is given a piece of paper 



GEOMETRICAL TASKS IN PRESCHOOL 

81 

 

 

 

 

 

 

 

 

Figure 3: Triangles and non-triangles. 

with a drawing made up of triangles. In a basket there are many different colored 
cutouts of triangles which fit the triangles in the picture. The task is to find cutout 
triangles which match the drawn triangles and construct the same picture from the 
cut outs.  

 

 

Figure 4. Ellen’s drawing made out of triangles. 
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In a variation of this task, Joy produced the picture in Figure 5 and had children 
color in various shapes according to her instructions. The first time she 
implemented this task during the year, she instructed children to color in all the 
triangles using a green marker, the circles with a red marker, and the quadrilaterals 
with a blue marker. The children, however, refused to comply because, according 
to their sensibilities, the sun ought to be yellow. They insisted on coloring in all the 
parts of the sun, the circle and the triangles, in yellow. Thus, at the end of the year, 
Joy revised her instructions. First, she had the children color in only the triangles in 
any color which they chose. After she was satisfied that they had indeed done this, 
she asked them to color in all the quadrilaterals. Finally, the children colored in all 
the circles. The end result was a multi-colored picture. On the one hand, just from 
looking at the colors, one would not be able to tell if the child differentiated 
between the shapes. On the other hand, a triangle or quadrilateral is not determined 
by its color.  

 
Figure 5. Color in the triangles, quadrilaterals, and circles. 

Show-and-tell: Describing three-dimensional geometrical figures 
Lily described this task to be implemented during circle time. The teacher places 

inside a paper bag an assortment of three-dimensional figures such as balls, cones, 
cylinders, cubes, and a variety of pyramids. Each child takes a turn pulling out a 
figure, naming it, showing it to everyone in the class, and describing how it feels 



GEOMETRICAL TASKS IN PRESCHOOL 

83 

and the movement which it can do. For example, a ball feels round all around and 
can roll in all directions. A cylinder has two “flat” ends and can be rolled forward 
and backwards. A cone has one “point” and “spins” on its head. 

Joy described a similar task also to be implemented during circle time. The 
teacher spreads out in the middle of the circle many different three-dimensional 
figures such as those mentioned above. Then she turns to one child and describes 
the un-named figure which the child must then bring to the teacher. For example, 
the teacher may request a solid which is made up of squares all around. The child 
would then bring the teacher a cube. Or the teacher could ask for a solid that has 
two circles, one on either end and can roll back and forth. The child would then 
bring the teacher a cylinder. 

The above is just a sample of the variety of tasks teachers designed and 
implemented in their classes during the year. Many teachers described 
implementing some of the tasks above in the yard. Others described how they 
implemented some of the tasks with individual children in order to assess a child’s 
knowledge. In general, some of the task variations stemmed from the teachers’ 
preferences. Some teachers were more inclined to work with individual children 
while others leaned towards group activities. Different teachers chose different 
materials depending on what was available to them as well as what they felt the 
children would enjoy working with. The plethora of ideas generated by the teachers 
allowed also for variety within the same kindergarten. Thus, a sorting activity, 
which aims for children to differentiate between examples and nonexamples of 
some specific shape, could be implemented once on an activity board, then later on 
with a fishing game, and again at another time, by coloring in only triangles in a 
picture made up of triangles and non-triangles. In other words, the variety of tasks 
implemented, while dependent on the teacher’s choice, still allowed the children to 
review geometrical concepts in a variety of manners.  It is important to note and 
recall that these teachers had participated in professional development which 
afforded them to opportunity to enhance not only their geometrical knowledge but 
their geometrical pedagogical knowledge. We now turn to Part Three, professional 
development for preschool teachers.   

 





PART 3 

GETTING READY TO TEACH GEOMETRY IN THE 
PRESCHOOL – PRESCHOOL TEACHER EDUCATION 

Would you be surprised to know that many preschool teachers are not required to 
learn mathematics courses towards their early childhood education degree? Does it 
seem appropriate? Ginsburg (2008), in his position paper regarding preschool 
mathematics education reported that typically, early childhood (approximately ages 
3-5) educators are “poorly trained to teach the subject, are afraid of it, feel it is not 
important to teach, and typically teach it badly or not at all” (p. 3). If you are an 
early childhood teacher educator, have you given thought to what future preschool 
teachers need to know if they are to introduce geometry and support geometric 
thinking in their young charges? This part of the book begins by reviewing position 
and policy papers which outline the roles of the teacher in fostering mathematical 
and geometrical knowledge in preschool. From these roles, we may derive and 
theorize about the knowledge that teachers need in order to fulfill these roles. It 
continues by reviewing past research on preschool teachers’ knowledge for 
teaching mathematics and geometry and then offers a tool for conceptualizing 
preschool teachers’ knowledge for teaching geometry. The second chapter of this 
part illustrates how preschool teachers’ knowledge for teacher geometry may be 
enhanced with professional development. Finally, we offer some tasks that may be 
implemented in the professional development of preschool teachers. 
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CHAPTER 7 

CONCEPTUALIZING PRESCHOOL TEACHERS’ 
KNOWLEDGE FOR TEACHING GEOMETRY  

7.1 POSITION PAPERS, POLICY REPORTS, AND NATIONAL GUIDELINES: WHAT 
DO THEY RECOMMEND?  

Who says that preschool teachers need to teach geometry (or for that matter any 
mathematics)?!? In the past, researchers held the opinion that young children have 
little knowledge of mathematics and should not begin learning mathematics before 
beginning formal schooling in elementary school (Bereiter & Engelmann, 1966; 
Thorndike, 1922). Recently, a joint position paper published in the United States 
by the National Association for the Education of Young Children (NAEYC) and 
the National Council for Teachers of Mathematics (NCTM) stated that “high 
quality, challenging, and accessible mathematics education for 3- to 6-year-old 
children is a vital foundation for future mathematics learning” (NAEYC & NCTM, 
2002, p.1). As such, they put forth 10 research-based recommendations to guide 
classroom practice as well as four recommendations for policies, system changes, 
and other actions essential for the support of these practices (see Figure 1). While 
reading the guidelines for classroom practice, ask yourself: What knowledge must 
a preschool teacher have in order to fulfill the many roles outlined in the position 
paper? 
 

In high-quality mathematics education for 3- to 6-year-old children, teachers and other key 
professionals should 

1. enhance children’s natural interest in mathematics and their disposition to use it to make sense 
of their physical and social worlds 

2. build on children’s experience and knowledge, including their family, linguistic, cultural, and 
community backgrounds; their individual approaches to learning; and their informal knowledge 

3. base mathematics curriculum and teaching practices on knowledge of young children’s 
cognitive, linguistic, physical, and social-emotional development 

4. use curriculum and teaching practices that strengthen children’s problem-solving and reasoning 

processes as well as representing, communicating, and connecting mathematical ideas 

5. ensure that the curriculum is coherent and compatible with known relationships and sequences 
of important mathematical ideas 

6. provide for children’s deep and sustained interaction with key mathematical ideas 

7. integrate mathematics with other activities and other activities with mathematics 
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8. provide ample time, materials, and teacher support for children to engage in play, a context in 
which they explore and manipulate mathematical ideas with keen interest 

9. actively introduce mathematical concepts, methods, and language through a range of appropriate 
experiences and teaching strategies 

10. support children’s learning by thoughtfully and continually assessing all children’s 
mathematical knowledge, skills, and strategies. 

To support high-quality mathematics education, institutions, program 
developers, and policymakers should 

1. create more effective early childhood teacher preparation and continuing professional 
development 

2. use collaborative processes to develop well-aligned systems of appropriate high-quality 
standards, curriculum, and assessment 

3. design institutional structures and policies that support teachers’ ongoing learning, teamwork, 
and planning 

4. provide resources necessary to overcome the barriers to young children’s mathematical 
proficiency at the classroom, community, institutional, and system-wide levels. 

 

Figure 1. NAEYC and NCTM (2002) guidelines for preschool mathematics. 

As can be seen from the 10 recommendations which guide classroom practice, 
the teacher has a vital, active, and multi-faceted role in promoting children’s 
mathematical knowledge. She must take into consideration children’s past 
experiences and knowledge, be able to teach mathematical concepts in a variety of 
ways, and encourage children’s mathematical reasoning, language, and 
communication skills. Did you think about the knowledge a preschool teacher 
would need in order to carry out the 10 recommendations listed above? It seems 
obvious that if the teacher is to promote mathematical learning, she must know 
mathematics. Yet, only a few of the recommendations seem specifically related to 
a teacher’s mathematical knowledge. For example, Point 9 specifically mentions 
that the teacher should introduce mathematical concepts, methods, and language. 
Therefore, we may infer that the teacher must know the mathematical concepts, 
methods, and language which are to be taught at this age. However, Point 2 
encourages the teacher to consider the student’s experiences, cultural and familiar 
backgrounds, and informal knowledge. How may Point 2 be related to teachers’ 
knowledge for teaching mathematics? Point 8 advises teachers to provide materials 
and a context in which children may explore mathematical ideas. What knowledge 
would support teachers in their endeavor to provide appropriate materials and 
create a supportive environment for learning mathematics? Is knowing about 
number concepts and shapes sufficient for being able to teach geometry in 
preschool? 

Although it was not the intention of the position statement to specifically outline 
content, geometry is mentioned in several places. At times, learning geometrical 
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concepts is the specific goal. At other times, knowing geometrical concepts is 
mentioned as a means to achieving other goals. For example, when elaborating on 
how teachers should take into consideration individual approaches to learning, the 
paper states that some children “learn especially well when instructional materials 
and strategies use geometry to convey number concepts” (p. 4). How is this related 
to teachers’ knowledge? Basically, the preschool teacher must not only know 
geometrical concepts in order to teach geometry but must also know how to use 
geometrical concepts to teach number conceptions. Another role of the preschool 
teacher is to make connections between mathematical ideas. Here too, geometry is 
mentioned specifically. “When children connect number and geometry (for 
example, by counting the sides of shapes, using arrays to understand number 
combinations, or measuring the length of their classroom), they strengthen 
concepts from both areas and build knowledge and beliefs about mathematics as a 
coherent system” (p. 6). Again, it is not enough for the teacher to know how to 
teach number concepts and geometry concepts. The teacher must also know how to 
connect concepts from both mathematical domains. More recently, the Curriculum 
Focal Points for Prekindergarten through Grade 8 Mathematics (NCTM, 2006) 
identified curriculum focal points for prekindergarten and kindergarten children, 
specifically mentioning geometry as an emphasized topic for children of this age. 
Children should be able to identify and describe a variety of two- and three-
dimensional shapes presented in a variety of ways and use geometrical concepts 
when recognizing working on simple sequential patterns or when analyzing a data 
set. For example, the attributes children identified in relation to geometry may be 
used to analyze a set of data objects. 

The Australian Association of Mathematics Teachers (AAMT) and Early 
Childhood Australia (ECA) also published a joint position paper addressing the 
importance of early childhood mathematics. This paper listed no less that 16 
recommendations of pedagogical practices for early childhood educators to adopt. 
These included encouraging young children to see themselves as mathematicians, 
focusing on the use of mathematical language to describe and explain mathematical 
ideas, and assessing young children’s mathematical development (AAMT / ECA, 
2006). Unlike the position paper published in the US, the Australian paper makes 
no mention of specific mathematical content. And yet, we can derive from the few 
recommendations mentioned above that if a preschool teacher is going to promote 
geometrical knowledge, she must herself know appropriate geometric language, be 
able to explain geometrical concepts, and assess her young students’ geometrical 
knowledge. In England, the Statutory Framework for the Early Years Foundation 
Stage (2008) states that “children must be supported in developing their 
understanding of Problems Solving, Reasoning and Numeracy in a broad range of 
contexts…They must be provided with opportunities to practice and extend their 
skill… to gain confidence and competence in their use” (p. 14). The framework 
goes on to list 12 early learning goals that children should reach by the age of five. 
When assessing the achievement of these goals, geometry is related to in that 
practitioners should check if the child “uses mathematical language to describe 
solid (3D) objects and flat (2D) shapes” (p. 47). Reference to the preschool 
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teacher’s roles in achieving these goals is made in the accompanying non-statutory 
Practice Guidance for the Early Years Foundation Stage (2008). There, it is 
suggested that practitioners attend to three major areas: positive relationships, 
enabling environments, and learning and development. The first area includes 
giving children sufficient time and space to use new mathematical ideas during 
child-initiated activities, encouraging children to explore real-life problems, 
supporting children in their communication of ideas other than spoken English, and 
valuing children’s own explorations. The second area includes recognizing the 
potential of both outdoor and indoor environments to explore mathematical 
concepts. The third area includes supporting the learning and development of 
mathematical ideas through a variety of activities such as stories, songs, and 
games.  

The mandatory Israel National Mathematics Preschool Curriculum (INMPC, 
2008), also recognizes the many roles of the preschool teacher in the mathematical 
development of the children.  

The mathematical development of the child is related to the opportunities the 
child has to engage in mathematics in preschool, to the way in which the 
preschool teacher exposes the child to mathematics, to the type of activities 
and tasks which the teacher presents to the child, to the ability of the teacher 
to follow the child’s development and advance this development … Young 
children also learn by mimicking the teacher. Therefore, it is important for 
the preschool teacher to use correct mathematical language when speaking to 
the children so that they may become used to mathematical language and 
repeat it. The use of correct mathematical language may prevent or minimize 
misconceptions later on. (INMPC, p. 15) 

Throughout the curriculum guidelines, there are suggestions for the teacher on how 
to plan explicit mathematical activities as well as how to take advantage of 
mathematical activities which may spontaneously arise in the class.  

To summarize, teachers’ knowledge must be sufficient in order to specifically 
teach geometrical concepts as well as to use geometrical concepts in order to reach 
more global mathematical aims. Taking into consideration the many position 
papers as well as curriculum guidelines mentioned above, Table 1 summarizes 
some of the direct aims of learning geometry as well as some of the indirect ways 
geometry is used as a tool in the achievement of more global aims. 

Take a minute and review once more the recommendations listed in the various 
position papers and curriculum guidelines. Now attempt to adapt these general 
recommendations to the teaching of geometrical concepts in preschool. Can you 
put them all together and conceptualize what the preschool teacher would need to 
know if she were to attempt to carry out even some of the guidelines?  
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Table 1. Some aims of learning geometry. 

Geometry as the specific 
aim 

By the end of kindergarten children should be able to: 
Identify, name, describe, and sort two- and three-
dimensional figures according to the attributes of these 
figures. 

Geometry as a tool in 
achieving global aims 

Through geometry children learn to develop spatial 
reasoning skills, discriminate between critical and non-
critical attributes of a concept, and learn to connect 
concepts to their daily lives becoming aware of the 
difference between every-day language and 
mathematical language. 

 

The National Association for the Education of Young Children (NAEYC) and 
the National Council for Teachers of Mathematics (NCTM) recommend that 
“teachers of young children should learn the mathematics content that is directly 
relevant to their professional role” (p. 14). Similarly, the Australian Association of 
Mathematics Teachers (AAMT) and Early Childhood Australia (ECA) 
recommended that early childhood staff be provided with “ongoing professional 
learning that develops their knowledge, skills and confidence in early childhood 
mathematics” (p. 4). National guidelines recognize the importance of increasing 
early childhood educators’ knowledge for teaching mathematics and geometry but 
fall short of stating what this knowledge is.  

We have begun to formulate some ideas regarding the knowledge a preschool 
teacher would need. Conceptualizing teacher’s knowledge is not a simple or trivial 
task. In the following section we discuss different theories regarding teachers’ 
knowledge for teaching mathematics and how they relate to knowledge necessary 
for teaching geometry in preschool. 

7.2 THEORIES OF TEACHERS’ KNOWLEDGE 

Suppose you are a kindergarten teacher who would like to introduce the concept of 
a square in class. What do you need to know in order to teach five-year olds about 
squares? Obviously, you need to know what a square is. Consider the following 
figures (See Figures 2a and 2b):  



CHAPTER 7 

92 

 

 

Figures 2a and 2b. Two squares or a square and a diamond? 

Are they both squares? Isn’t the second figure a diamond? Can a shape be both a 
diamond and a square? As a preschool teacher, you might be called upon to answer 
these questions. A square may be defined as a quadrilateral with four equal sides 
and four right angles. Is this how you will define it to your students? Is it the only 
way to define a square?  

Breaking down teachers’ knowledge into different components allows us, 
teachers, teacher educators, and researchers, to examine what knowledge is 
necessary for teaching a subject or a specific concept.  In his seminal work, 
Shulman (1986) described and analyzed components of teachers’ knowledge 
necessary for teaching. Two of the major components identified were subject-
matter knowledge (SMK) and pedagogical content knowledge (PCK). SMK refers 
to the knowledge of facts, rules, procedures, and concepts required of a specific 
domain. SMK may be further divided into two levels (Even & Tirosh, 1995):  
“knowing that” and “knowing why”. Thus, regarding the square, it is important to 
know that some figure is a square as well as be able to explain why that specific 
figure is a square. SMK also includes understanding the structure of the subject 
matter. In mathematics, this includes knowing how definitions for the same 
concept may be equivalent and how definitions may be used to discern between 
examples and nonexamples of a concept. Thus, while a square may defined as a 
quadrilateral with four equal sides and four right angles, it may also be defined as a 
rectangle with two equal adjacent sides.  

Being able to draw or describe squares is important but not enough. Teachers 
also need to be able to explain to their students why some figure is or is not a 
square. PCK refers to “the ways of representing and formulating the subject that 
make it comprehensible to others … what makes the learning of specific topics 
easy or difficult” (Shulman, 1986, p. 9). It includes knowledge of appropriate 
analogies, examples, illustrations, and explanations. Regarding the square, it 
includes knowing that children often mistakenly see orientation as a critical 
attribute (Hannibal, 1999) and thus it is important to present a wide variety of 
examples of squares to children, including the diamond-like square in Figure 2b.  

Shulman’s theory of knowledge was further developed by Ball and her 
colleagues (e.g. Ball, Bass, & Hill, 2004; Ball, Hill, & Bass, 2005; Ball, Thames, & 
Phelps, 2008). Basing their theory on the work that mathematics teachers do in the 
classroom, they divided SMK further into common content knowledge (CCK) and 
specialized content knowledge (SCK). CCK may be defined as “the mathematical 
knowledge and skill used in settings other than teaching” (Ball, Thames, & Phelps, 
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2008, p. 399) whereas SCK is “mathematical knowledge not typically needed for 
purposes other than teaching” (Ball, Thames, & Phelps, 2008, p. 400).  

Within the context of geometry, Ball et al. (2008) gave a few examples 
illustrating the dimensions of knowledge for teaching in elementary school. 
Knowing that the diagonals of a parallelogram are not necessarily perpendicular 
may be considered knowledge typical of anyone who knows mathematics (CCK). 
Knowing “how the mathematical meaning of edge is different from the everyday 
reference to the edge of a table” (p. 400) is an example of SCK. You may be 
tempted to think that any adult knows enough mathematics to teach geometry in 
preschool. After all, we are not talking about calculus or college mathematics. We 
are talking about nursery and kindergarten! Let us consider again the square. You 
know how to draw a square, identify a square, and describe a square. This type of 
knowledge may be considered CCK. Do you know how squares are related to 
triangles? Have you thought about how squares are related to rectangles? Have you 
thought about how squares are related to cubes? This is knowledge more likely to 
be held by teachers and thus may be considered SCK. Now consider circles. You 
know how to draw circles (maybe with the help of a compass) and you can identify 
a circle. But can you explain the difference between a circle and an ellipse? These 
examples of SCK are in line with guidelines suggested by the various position 
papers mentioned previously in that they demonstrate the kind of mathematics 
knowledge preschool teachers must know in order to ensure a cohesive 
mathematics curriculum where children are able to make connections between 
mathematical ideas.  

Shulman’s (1986) theory of pedagogical content knowledge was also further 
differentiated by Ball et al (2008) into knowledge of content and students (KCS) 
and knowledge of content and teaching (KCT). KCS is “knowledge that combines 
knowing about students and knowing about mathematics” whereas KCT “combines 
knowing about teaching and knowing about mathematics” (Ball, Thames, & 
Phelps, 2008, p. 401). Consider the triangle and take a look at the shapes in Figure 
3. 

 

Figure 3. Which of the figures are triangles? 

Which will children identify as a triangle? How will children explain their 
reasoning regarding why some figure is a triangle and another is not? Knowing the 
answers to these questions is the type of knowledge exemplified by KCS. Taking 
into consideration children’s reasoning, the teacher must also know how to present 
to preschoolers the concept of a triangle. This includes knowing how to sequence 
the presentation of examples and which examples may deepen students’ conceptual 
knowledge. This is typical of KCT. These aspects of teachers’ knowledge, 
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knowledge of students and knowledge of teaching, were also implied by the 
position papers mentioned in the previous section. Recall that the various 
guidelines suggested that preschool teachers take into consideration children’s 
experiences and informal ways of thinking when planning mathematical activities. 
The guidelines also suggested that teachers engage in teaching practices that 
encourage mathematical reasoning and problem solving processes. In other words, 
Ball et al’s four dimensions of mathematical knowledge may also be used to 
describe preschool teachers’ knowledge for teaching mathematics.  

Alongside theories of teachers’ knowledge for teaching mathematics there exist 
theories of mathematics knowledge. That is, as we consider the knowledge needed 
for teaching mathematics, we also consider what it means to know mathematics. 
This is discussed in the next section.  

7.3 CONCEPT IMAGE/CONCEPT DEFINITION – A THEORY OF  
MATHEMATICS KNOWLEDGE  

There are several theories related to the components of mathematics knowledge. In 
Part One of this book we mentioned Tall and Vinner’s (1981) concept 
image/concept definition (CICD) theory. We review this theory again in this 
section and show how it may be used in conjunction with theories of teachers’ 
knowledge to provide a comprehensive theory of preschool teachers’ knowledge 
for teaching geometry. 

In general, the CICD theory focuses on the image of a concept as well as and 
opposed to the definition of a concept. We consider this theory especially 
appropriate when considering young children’s mathematical knowledge as they 
develop knowledge of mathematical concepts well before they learn formal 
definitions.  

Having precise definitions for mathematical concepts allows for mathematical 
coherence and provides the foundation for building mathematical theories. In 
geometry, for example, the definition of a square may be based on the definition of 
a rectangle, which in turn may be based on the definition of a parallelogram. 
However, these same mathematical concepts may have been encountered by the 
individual in other forms prior to being formally defined. The 3-year old may 
recognize a square but almost certainly has not encountered a precise definition for 
a square. Even after they are defined, mathematical concepts often invoke images 
both at the personal as well as the collective level. The term concept image is used 
to describe “the total cognitive structure that is associated with the concept, which 
includes all the mental pictures and associated properties and processes” (Tall & 
Vinner, 1981, p. 152). The concept definition refers to “a form of words used to 
specify that concept” (p. 152). A formal concept definition is a definition accepted 
by the mathematical community whereas a personal concept definition may be 
formed by the individual and change with time and circumstance. Because the 
concept image actually contains a conglomerate of ideas, some of these ideas may 
coincide with the definition while others may not. For example, what image comes 
to the mind of children when they think of a rectangle? In one study (Clements, 
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Swaminathan, Hannibal, & Sarama, 1999) it was suggested that children have a 
prototype of a rectangle which is long, for the most part disregarding orientation. 
Thus, many young children may incorrectly identify a long parallelogram as a 
rectangle. It was also found that rectangles that were too narrow or not narrow 
enough were not accepted. These images may clash with the definition of the 
rectangle.  

When a problem is posed to an individual, there are several cognitive paths that 
may be taken which take into account both the concept image and concept 
definition. At times, although the individual may have been presented with the 
definition, this particular path may be bypassed. According to Vinner (1991), an 
intuitive response is one where “everyday life thought habits take over and the 
respondent is unaware of the need to consult the formal definition” (p. 73). 
Intuitive knowledge is both self-evident and immediate and is often derived from 
experience (Fischbein, 1987). As such it does not always promote the logical and 
deductive reasoning necessary for developing formal mathematical concepts. 
“Sometimes, the intuitive background manipulates and hinders the formal 
interpretation” (Fischbein, 1993, p. 14). As discussed in Part One of this book, 
Fischbein (1993) considered the figural concepts an especially interesting situation 
where intuitive and formal aspects interact. The image of the figure promotes an 
immediate intuitive response. Yet, geometrical concepts are abstract ideas derived 
from formal definitions. Thus, as we consider the notions of concept image and 
concept definition, we take into account aspects of Fischbein’s theory related to 
intuitive and formal knowledge. 

Although Tall and Vinner (1981) introduced their theory within the context of 
advanced mathematical thinking, the interplay between concept definition and 
concept image is part of the process of concept formation at any age. Young 
children learn about and develop concepts, including geometrical concepts, before 
they begin kindergarten. As such, their concept image is often limited to their 
immediate surroundings and experiences and is based on perceptual similarities of 
examples, also known as characteristic features (in line with Smith, Shoben, & 
Rips, 1974). When viewing the equilateral triangle in Figure 3, one five-year old 
commented, “It’s a triangle because it looks like the roof a house”. Indeed, a non-
academic study of children’s books on shapes (Haven’t we all read such books to 
our children or grandchildren?) revealed that the triangle was most often associated 
with the roof a house. These books are meant to be read to young children well 
before they reach the age of five. This initial discrimination may lead to only 
partial concept acquisition in that children may consider some nonexamples to be 
examples and yet may consider some examples to be nonexamples of the concept. 
Regarding geometrical concept formation, van Hiele (1958) theorized that 
students’ geometrical thinking progresses through a hierarchy of five levels, 
eventually leading up to formal deductive reasoning. At the most basic level, 
students’ use visual reasoning, taking in the whole shape without considering that 
the shape is made up of separate components. At the second level students begin to 
notice the different attributes of different shapes but the attributes are not perceived 
as being related. At the third level, relationships between attributes are perceived 
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and definitions are meaningful. Kindergarten children begin to perceive attributes 
but need guidance in order to assess which attributes are critical for identifying a 
figure and which are not.  

After having briefly discussed components of geometrical knowledge, and 
having previously discussed components of teachers’ knowledge for teaching, we 
now combine these theories into a more coherent framework which can be used to 
discuss preschool teachers’ knowledge for teaching geometry.  

7.4 COMBINING A THEORY OF TEACHERS’ KNOWLEDGE WITH A THEORY OF 
MATHEMATICS KNOWLEDGE 

In framing the knowledge necessary for teaching geometry in preschool we rely on 
Shulman’s (1986) notions of SMK and PCK. We suggest that SMK may be further 
divided into topic-specific mathematical knowledge (TMK) and general 
mathematical knowledge (GMK). TMK is knowledge related to a specific topic. 
For example, knowing the definition of a square is knowledge specifically related 
to teaching about squares. GMK refers to knowledge that applies to many different 
mathematical domains and is not specific to only one topic. For example, 
knowledge of mathematical reasoning, knowing the difference between, for 
example, deductive and inductive reasoning, is knowledge necessary for teaching a 
wide range of mathematical topics. We apply Ball’s notions of KCS and KCT, as 
discussed above, in order to differentiate between types of PCK. We suggest that 
these four dimensions of teachers’ knowledge be combined with Tall and Vinner’s 
concept image/concept definition theory in order to provide a finer grain and more 
focused lens with which to study preschool teachers’ knowledge for teaching. Such 
a framework would allow us to investigate, for example, teachers’ knowledge of 
the psychological aspects of student’s mathematical errors. We illustrate this 
framework by focusing on teachers’ knowledge for teaching triangles.  

 
 Domains of teachers’ knowledge 

Domains of 
mathematical thinking 

TMK GMK KCS KCT 

Concept image Cell 1 Cell 2 Cell 3 Cell 4 

Concept definition Cell 5 Cell 6 Cell 7 Cell 8 

Figure 4. A combined-theories framework for teachers’ knowledge for teaching geometry. 

Cell 1: TMK-Image. Here we address the topic-specific knowledge of a 
concept’s image. Regarding triangles, this includes a rich concept image of 
triangles which incorporates scalene and obtuse triangles and not just equilateral 
and isosceles triangles. It may also include a broad image of nonexamples for 
triangles. For example, what image comes to mind when you think of something 
that is not a triangle?  Tsamir, Tirosh, and Levenson (2008) asked 28 adults with at 
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least a first degree in science, mathematics, or engineering to give an example of 
“something that is not a triangle”. They were then each asked to give another 
example of “something that is not a triangle”. The immediate first response of all 
the adults was a circle. Their second example was a square (24 adults) or a 
rectangle (4 adults). Yet teachers’ concept image of nonexamples of triangles 
should also include other nonexamples such as those featured in Figure 5. 

 

 

Figure 5. Some nonexamples of triangles. 

Cell 2: GMK-Image. Here we address the general knowledge of a concept’s 
image necessary for teaching. This includes knowing that, in general, orientation of 
a figure or the thickness of a line should not play a factor when determining two-
dimensional geometrical figures.  

Cell 3: KCS-Image. Here we address knowledge related to students and concept 
images. This includes knowing that the equilateral triangle is a prototypical triangle 
(Hershkowitz, 1990) and that young children may not identify as a triangle a long 
and narrow triangle such as the scalene triangle, even when admitting that it has 
three points and lines (Shaughnessy & Burger, 1985). It also includes knowing 
children’s concept image of nonexamples. For example, Tsamir, Tirosh, and 
Levenson (2008) asked 22 kindergarten children to give an example of something 
that is not a triangle. The immediate first response of 18 children was a circle. The 
four others said a square.  

We also include in this cell knowledge of the van Hiele model (e.g., van Hiele & 
van Hiele, 1958) for students’ geometrical thinking and being able to recognize, for 
example, that a student’s concept image at the most basic level takes in the whole 
shape without considering its components. As such, this cell includes knowing that 
a rounded “triangle” such as the first shape in Figure 5, is often identified as a 
triangle (Hasegawa, 1997) because children take in the likeness of the whole shape, 
ignoring that the shape is missing vertices.  

Cell 4: KCT-Image. Here we address knowledge related to teaching and concept 
images. This includes knowing which examples and nonexamples to present to a 
student which will broaden his concept image of a triangle to include, for example, 
triangles with different orientations (see Figure 6). 
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Figure 6. The same triangle illustrated with different orientations. 

Cell 5: TMK-Definition. Here we address topic-specific knowledge related to a 
concept’s definition. It includes knowing one or more definitions for a triangle. It 
also includes knowing that defining the triangle as a three-sided polygon implies 
that it must be a closed figure with three vertices. It includes knowing that the 
triangle may be defined as a three-sided polygon, or a polygon with three angles, or 
a polygon with three vertices and that all three definitions are equivalent.  

Cell 6: GMK-Definition. Here we address general knowledge of definitions. In 
mathematics, definitions are apt to contain only necessary and sufficient conditions 
required to identify an example of the concept. Other critical attributes may be 
reasoned out from the definition. This applies to definitions of triangles as well as 
to definitions of other two-dimensional shapes, as well as to definitions of non-
geometric mathematical concepts.  

Cell 7: KCS-Definition. Here we address knowledge related to students and 
concept definitions. It includes knowing that a minimalist definition may not be 
appropriate for young students at the first or second van Hiele level because they 
do not necessary perceive that a polygon with three sides must necessarily have 
three vertices. For example, research has suggested that for young children, the 
association between a triangle and the attribute of threeness may be stronger than 
the necessity for it to be closed or for its vertices to be pointed (Tsamir, Tirosh, & 
Levenson, 2008). Some children who identified the rounded “triangle” (the first 
shape in Figure 5) as a triangle claimed, “it has three corners even though it’s 
rounded.” Referring to the zig-zag “triangle” (the second shape in Figure 5) one 
child claimed it was a triangle “even though it has a lot of points.”   

Cell 8: KCT-Definition. Here we address knowledge related to teaching and 
concept definitions. It includes speaking to children with precise language, calling 
the vertices of a triangle by their proper name as opposed to referring to them as 
corners. In fact, many of the position papers mentioned in the first section of this 
chapter pointed to the importance of using mathematical language and encouraging 
children to use mathematical terms during play and daily routines. Knowledge in 
this cell also includes knowing which examples and nonexamples of a triangle to 
present to children which may encourage children’s use of concept definitions and 
promote their advancement along the van Hiele levels of geometrical thinking. For 
example, the following nonexamaples (see Figure 7) do not necessarily encourage 
children to refer to critical attributes when reasoning about triangles (Tsamir, 
Tirosh, & Levenson, 2008).  
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Figure 7. Intuitively recognized non-triangles. 

Instead, these figures were found to be intuitively recognized as non-triangles in 
that children recognized them immediately without feeling the need to justify their 
identification. On the other hand, the presentation of nonexamples of a triangle 
which are not intuitively recognized as such, such as those shown in Figure 8, may 
encourage children to refer back to the concept definition when identifying the 
figure as a nonexample of a triangle (Tsamir, Tirosh, & Levenson, 2008).  

 

 

Figure 8. Non-intuitive non-triangles. 

7.5 SUMMING UP 

There are many mathematical knowledge theories which could be presented to 
teachers. Choosing which ones are particularly relevant to teaching and which ones 
to present to teachers can be complex (Tsamir, 2008). Regarding mathematics 
teaching, the concept image concept definition theory is a widely recognized 
mathematics education theory which spans students of all ages and is relevant to 
many different mathematical contexts (Hershkowitz, 1989; Schwarz & 
Hershkowitz, 1999; Tall & Vinner, 1981; Vinner & Dreyfus, 1989). It informs our 
understanding of mathematical concept formation. It allows us to predict and 
analyze students’ errors. Another direction for widening the use of the tool would 
be to consider combining other theories of mathematical knowledge with theories 
of teachers’ knowledge. Tsamir (2008) described how familiarizing secondary 
school teachers’ with Fischbein’s (1993) theory of the three components of 
knowledge and Stavy and Tirosh’s (1996) theory of the intuitive rules may 
promote secondary teachers’ mathematical and pedagogical knowledge. The choice 
of theories may depend on the mathematical context as well as the activities or 
tasks which take place in the classroom. For example, parts of the intuitive rules 
theory are especially appropriate when engaging in comparison tasks. Combining 
the intuitive rules theory with the four dimensions of teachers’ knowledge may 
then focus us, for example, on developing teachers’ knowledge of how and when 
students’ use these rules (KCS). Another direction for addressing this issue might 
be to pool mathematical education theories that investigate students’ mathematical 
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learning and possible sources of errors. For example, Fischbein’s (1993) theory 
mentioned above, the intuitive rules theory (Stavy & Tirosh, 1996), and Tall and 
Vinner’s (1981) concept image/concept definition theory all have elements of 
intuitive thinking. The mathematics education research community could consider 
how to combine these theories in order to provide a more comprehensive theory for 
investigating students’ mathematical thinking as well as teachers’ mathematics 
knowledge for teaching. 

The combined theory we have suggested in this chapter addresses many of the 
issues stipulated in the various position papers and guidelines mentioned in the first 
section. The teacher has many roles. She must take into consideration children’s 
prior knowledge, intuitions, development, and cultural background as she plans 
appropriate activities. For this it is important to be knowledgeable of content and 
students. She is advised to plan activities which focus on mathematics as well as 
know how to take advantage of every day occurrences which can be used as 
impetus to teach mathematics. For this she needs knowledge of content and 
teaching. She is encouraged to use mathematical language and encourage her 
children to use mathematical language. This is subject matter knowledge for 
teachers. And of course, she must know how to break down the geometry and how 
geometrical knowledge is developed. For this, the concept image concept 
definition theory is particularly appropriate.   

The theoretical framework described here may be used to build teachers’ 
knowledge in at least two ways. First, it serves as a tool for teacher educators by 
allowing the teacher educator to focus on the specific knowledge being promoted. 
In much the same way, when explicitly presented to teachers it may also serve to 
focus the teachers on the knowledge they are building and its use in teaching. In 
the next chapter we discuss professional development for preschool teachers which 
aims to enhance teachers’ knowledge for teaching geometry using the theoretical 
framework described here.  
 
 
 



 

CHAPTER 8 

ENHANCING PRESCHOOL TEACHERS’ 
KNOWLEDGE FOR TEACHING MATHEMATICS 

Professional development for practicing teachers may vary in duration, form, and 
content. A program attended by teachers may range from a one-day summer 
meeting followed by eight workshops during the year, to a semester course given 
on a weekly basis (Tsamir, 2008), to an intensive two-year program (Graven, 
2004). The program may take the form of university courses immersed in theory or 
workshops immersed in practice. Relating to early childhood teachers, the NAEYC 
and NCYM (2002) offered some guidelines: “Inservice professional development 
needs to move beyond the one-time workshop to deeper exploration of key 
mathematical topics as they connect with young children’s thinking and with 
classroom practices” (NAEYC & NCTM, 2002, p. 6). In the previous chapter we 
discussed a framework for preschool teachers’ knowledge which takes into 
consideration both theories of teachers’ knowledge as well as theories of 
mathematical knowledge. In this chapter we illustrate how preschool teachers’ 
knowledge for teaching geometry may be enhanced with professional 
development. 

8.1 BACKGROUND 

From the year 2006 we have continuously provided professional development for 
groups of preschool teachers with various educational backgrounds. Our program, 
Starting Right: Mathematics in Preschools, carried out in collaboration with the 
Rashi Foundation and the Israel Ministry of Education, was aimed at teachers who 
had a college degree in early childhood education and a state certified license to 
teach 4-6 year old children in state-run nursery and kindergarten classes. Over a 
two-year period, teachers met with the instructors on a weekly basis (4 hours per 
week). During the first year of the program, on a rotational basis, sessions took 
place at one of the preschool classrooms. During the second year of the program, 
sessions took place either at a local educational center or in one of the preschools. 
Each session was video-recorded and transcribed.  

Throughout this program, each teacher was visited by a member of the 
professional development staff who came to the preschool on a weekly basis, 
sitting with children and guiding the teacher in her endeavor to create a 
mathematically enriched environment for her children. Attention was given to both 
teachers’ and children’s affect. The aim of the program was for all children to 
exhibit competency in all mathematical areas taught according to the mandatory 
national curriculum for these ages (such as geometry, numbers, and operations).  
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Our program, First Steps in Mathematics, carried out in collaboration with the 
WIZO foundation day care centers, was aimed at practitioners and caregivers who 
did not necessarily have a college degree in early childhood education.1 These 
practitioners worked in daycare centers caring for children up until and including 
the age of three. Over a two year period, ten workshops took place aimed at 
increasing practitioners’ mathematical and pedagogical knowledge. In addition, 
practitioners observed program staff members as they engaged young children in 
mathematical activities.  

In the previous chapter we laid out a framework for describing preschool 
teacher’s knowledge for teaching geometry. The framework combined elements of 
Shulman’s (1986) and Ball et al’s (2008) components of knowledge for teaching 
with Tall and Vinner’s (1981) concept image concept definition theory of 
mathematics knowledge. Shulman’s notion of SMK was differentiated into topic-
specific mathematical knowledge (TMK) and general mathematics knowledge 
(GMK). We also incorporated Ball’s notions of knowledge of content and students 
(KCS) and knowledge of content and teaching (KCT), refinements of Shulman’s 
(1986) PCK. In the following sections we describe different segments of our 
professional development programs, which illustrate how the combined theory 
framework suggested in the previous chapter may be used to build and assess 
preschool teachers’ knowledge for teaching geometry.   

8.2 PROGRAM SEGMENTS 

In order to differentiate between the participants of the different programs, we note 
that preschool teachers refer to the group of nursery and kindergarten teachers who 
participated in the program Starting Right: Mathematics in Preschools whereas 
practitioners refer to the group of caregivers who participated in the program First 
Steps in Mathematics. 

Assessing preschool teachers’ TMK and GMK regarding concept images  

All of our programs for preschool teachers began with the topic of triangles. We 
began with triangles for several reasons. First, the preschool curriculums in many 
countries, including England, the U.S., and Israel specify that preschool children 
should be able to recognize many different examples of triangles. Second, we 
hypothesized that preschool teachers would be somewhat familiar with the 
definition of a triangle and perhaps less familiar with definitions for other 
geometrical figures. For example, although squares and rectangles may be familiar 
to many, the hierarchical nature of quadrilaterals, make the square a complex 
figure to define (De Villiers, 1994).  

What image comes to mind when one thinks about a triangle and what TMK and 
GMK must teachers know regarding this concept image? Recall that according to 
Tall and Vinner (1981) the concept image consists of mental images, properties, 

                                                      
1 This program was supported by the WIZO foundation in Frankfurt, Germany.  
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and processes associated with the concept. A concept image may also change with 
time and experience. Studies have shown that when asked to draw a triangle, most 
people will draw either an equilateral triangle or isosceles triangle with a horizontal 
base (Hershkowitz, 1990). Thus, our first task was to assess teachers’ concept 
image of triangles. 

During our first meeting with the preschool teachers, we asked the teachers to 
draw three examples of triangles and three nonexamples of triangles. First, we note 
that the examples teachers drew were indeed triangles and all of the nonexamples 
teachers drew were indeed not triangles. In other words, the teachers demonstrated 
TMK of the concept image for a triangle. Eight of the nine teachers present during 
this session drew at least one example of an equilateral triangle with a horizontal 
base. The ninth teacher drew a triangle with unequal sides but with a horizontal 
base. Five teachers drew only equilateral triangles with horizontal bases for all 
three examples of triangles (see Figure 1). At this point we were unsure if the 
teachers’ general knowledge of a triangle’s concept image included knowing that 
orientation may be varied. 

 
Figure 1. One teacher’s response to the task of drawing three examples of triangles. 

 
Two teachers drew one right triangle each, with horizontal bases. Only three 

teachers drew examples of triangles with a different orientation (see Figure 2).  
 

 

Figure 2. A second teacher’s response to the task of drawing three examples of triangles. 
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Regarding the nonexamples, all of the teachers drew geometrical figures such as 
circles, squares, and trapezoids (see Figure 3). These results indicated GMK of the 
concept image of nonexamples. In mathematics, when considering the concept 
image of a nonexample, it should also come from the same domain as the example, 
in this case two-dimensional geometrical figures.  

 

Figure 3: One teacher’s response to the task of drawing three nonexamples of triangles. 

 Assessing and building teachers’ TMK and GMK regarding concept definitions  

During the same session described above, teachers were asked to write down on a 
piece of paper the definition of a triangle. Although no two definitions were 
exactly alike, each teacher was able to give a valid definition of a triangle. The 
following are some examples of definitions that the teachers wrote: 

A triangle is a shape with three sides and three vertices. 

A triangle is a polygon with three vertices. 

A triangle is a geometric shape with three straight lines and closed. 

A triangle has three sides and three angles. 

In other words, the teachers demonstrated what may be considered TMK of the 
concept definition. Building teachers’ GMK regarding concept defintions was done 
gradually and began by comparing the different definitions teachers had given for a 
triangle. The instructor gave the following instructions: 

Look at the definitions (now written on the board) and try to think which are 
correct and which are incorrect … if there are definitions which are 
unacceptable, explain why. If there are definitions which you approve of 
more than others, explain why. If there are definitions for which a slight 
revision may improve the acceptability of that definition, then write it. 
Perhaps there is more than one correct definition. 
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The teachers engaged in the task and then discussed the results together. Pointing 
to the first definition, “A triangle is a shape with three sides and three vertices”, the 
instructor requested the teachers to raise their hands if they agreed that it was a 
valid definition. The following discussion ensued: 

I: The question is very simple. Is this a definition of a triangle or not? That 
means that you can only vote yes or no. There is nothing in between and 
everyone has to vote. 

H: How many times can I vote (yes)? 

I: For each of the definitions you can either vote yes or no. 

E: Is the question then if it’s (the definition written on the board) closer to yes 
being a definition or closer to not being a definition? 

I: There is no approximation. In mathematics it either is or is not (a valid 
definition). 

In the above segment teachers come to realize that mathematical definitions must 
be precise. This is not only true of definitions for triangles but for all definitions of 
mathematical concepts. On the other hand, different definitions may be equivalent 
and thus there may be more than one definition for a particular concept. Although 
the instructor’s approach may be considered quite direct, it became the norm with 
these preschool teachers that the instructor gave the closing argument of each 
discussion. Discussing the merits of each of the definitions led to a more general 
discussion of definitions: 

E: Maybe we first need to know what a definition is. 

R: A definition must be clear. 

Y: That you don’t argue with. 

R: In a dictionary. 

The teachers have begun to realize that it is important to first ascertain what is 
meant by a definition in mathematics before they can discuss if what is written may 
be considered a valid definition of a triangle. Differentiating between everyday 
dictionary definitions and mathematical definitions is another aspect of GMK 
related to concept definitions and was discussed further in the following lesson as 
teachers reviewed various definitions for a triangle found in dictionaries and 
mathematics textbooks. 

During the next lesson Tall and Vinner’s CICD theory was presented explicitly 
to the teachers. The teachers had been discussing which of the dictionary 
definitions would be unacceptable and for what reasons. One teacher quoted the 
following definition for a triangle, “a closed figure made up of straight lines.” 
Another teacher responds, “But that can be like … a crown that you make. It 
doesn’t say how many sides.” This exchange prompted the instructor to introduce 
the notions of concept image and concept definition:  
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Notice the connection between your thoughts and your knowledge, between 
your imagination and your knowledge … Vinner investigated mathematical 
concepts that also have a visual presentation. However, he also said that in 
mathematics we have definitions and we must work according to these 
definitions. This is the concept definition. The concept image is what we 
imagine in our thoughts when we close our eyes and think of the concept.  

In the elementary school, concept definitions may be used to differentiate between 
critical and non-critical attributes of a concept, in order to identify examples and 
nonexamples of that concept. After introducing the notion of a concept definition, 
the instructor adds, “to define is to simply characterize a group of mathematical 
entities… to say what can be called by this (concept) name and what cannot.” The 
instructor then refers to the examples and nonexamples of triangles the teachers 
drew during the first lesson pointing out that these illustrate each teacher’s concept 
image whereas currently, the discussion at hand has revolved around the concept 
definition of a triangle. 

In the above segments, the combined framework was essentially used by the 
instructor to assess current knowledge and then to direct and focus the knowledge 
being built. “From a cognitive point of view, prior knowledge has to be considered 
as a possibly influential characteristic” (Blömeke, Felbrich, Müller, Kaiser, & 
Lehmann, 2008). Assessing current knowledge is an essential first step to building 
new knowledge. The combined framework served to differentiate between TMK 
and GMK of the concept image as well as teachers’ TMK and GMK of the concept 
definition. After assessing current knowledge the instructor began by focusing on 
GMK related to concept definitions leading eventually to an explicit discussion of 
the CICD theory.  

 Differentiating between subject matter knowledge (TMK and GMK) and KCT  

Throughout the program a clear differentiation was made between mathematical 
knowledge for the teachers and mathematical knowledge as it is applied in the 
classroom. Initially, teachers found it difficult to separate these two domains of 
knowledge.  

M: This is very confusing. You started off by talking about preschool 
children (in the beginning of the lesson) and now you decided to talk about 
mathematical thinking. 

I: Let’s put things in order. First, we must talk about the mathematics as is. 
First we (the teachers) need to know what a triangle is. The children will 
wait. Tomorrow morning we are not going to talk with the children about 
triangles. 

A: I see us as preschool teachers, sitting with the students with the classic 
square, the classic rectangle, and the classic triangle and then we say, “What 
is this?” The child should say it’s a triangle but according to what does he 
decide if it’s a triangle or not? 
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I: Just a second. We’ll get there. We’ll definitely talk about it but for now it’s 
just us. Differentiating between the children and us is very important. Part of 
what we will learn will be important mathematical knowledge that we will 
know but that we won’t necessarily tell it as such to the children because it 
may not be appropriate. 

The instructor is stressing the difference between KCT and GMK and that they are 
two different ways of knowing mathematics. She further explains the necessity for 
this differentiation, “My strong belief is that first you need to know what you are 
dealing with mathematically because otherwise there will be no basis for how you 
answer the child.” 

During the second lesson, as teachers discuss various definitions for a triangle, 
the difference between GMK and KCT is again brought up: 

I: What is the source of this definition? 

C: A geometry text book. 

I: For which grade? 

M: Junior high school. 

Y: And you also need to know for what (mathematics) level the textbook is 
geared to. 

I: Ok. I want to make something clear. In the end, we will bring to the class a 
definition which we feel is appropriate for the preschool. But, now we are 
talking about definitions which would be acceptable to mathematicians … 
Now, you need to decide which definition is valid and which is not. 

H: Wait a minute. Are you talking about for us or for the children? 

I: For you. 

The teachers are beginning to realize that a formal concept definition must be 
accepted by the mathematical community. This is part of the GMK being 
developed during these first two lessons related to concept definitions. On the other 
hand, knowing how to adapt a formal concept definition to the age and level of the 
students is an aspect of KCT. Although a triangle may be defined as a three-sided 
polygon, the teachers agreed that this definition would be unsuitable for young 
children for two reasons. First, it is quite unlikely that young children would 
comprehend the meaning of the term polygon. Second, a minimalist definition, 
although mathematically acceptable, does not stress all of the critical attributes that 
all examples share. As the instructor summarized: 

On the one hand, a definition in the preschool should take into consideration 
all of the critical attributes that are derived from the mathematical definition. 
On the other hand, it should take into consideration psychological aspects. 
We created a definition that includes closure, pointed vertices, straight sides, 
and the number three. Children should work according to this definition. 
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It was agreed that in the classroom children would be presented with the following 
definition: A triangle is a closed figure with three straight lines and three pointed 
vertices.2  

The above segment illustrates how the combined framework was used to focus 
teachers’ attention on the types of knowledge being built. In our program we found 
that teachers were eager to implement their newly acquired knowledge in the 
classroom. While this is, of course, commendable, the teachers needed to sort out 
the difference between the mathematical knowledge needed for teaching and the 
pedagogical knowledge needed to convey the mathematics to their students. By 
making this difference explicit, teachers were first able to focus on their knowledge 
of concept definitions and then focus on the teaching of concept definitions.  

In the following section we describe how the combined theories tool was used to 
develop practitioners’ KCS related to the concept image of triangles. 

 Building practitioners’ KCS regarding concept images of triangles 

An important aspect of any teachers’ knowledge for teaching is knowledge of 
content and students. Practitioners, who may not have been exposed to theories of 
children’s geometric thinking, may still have acquired bits and pieces of this 
knowledge from their experiences taking care of children and engaging them with 
geometric activities (e.g. fitting shapes into puzzles). Yet, the practitioners may not 
be aware that they possess this knowledge or be aware that this knowledge is 
important. As such, the first step in enhancing this aspect of teachers’ knowledge 
for practitioners was to elicit from them what they know of children’s concept 
image regarding triangles. This took place in the very first session with the 
practitioners. 

I: We thought you could tell us a little about what you do in class regarding 
mathematics, shapes, and numbers. 

(A few of the practitioners give some examples of number activities in which 
they engage the children.) 

I: And what about shapes? 

L: They already know shapes. 

From this short segment we get the impression that the practitioners engage their 
children with more number than shape activities and that they believe that the 
children already know shapes. However, we do not know what L means when she 
says that the children “know shapes”. To draw the teachers into a more in depth 
discussion of what they know regarding children’s knowledge of triangles, the 
instructor continues: 

                                                      
2 It is important to note that precise language was used with the teachers as well as with the children. 
Terms such as corners and turns were not used. As such, “vertices” is the appropriate translation from 
Hebrew. 
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I: In most of the games, if children see a triangle, it’s drawn like this one 
(points to the prototypical triangle, see Figure 4a). If they see this one (points 
to the scalene triangle, see Figure 4b.), will the children say this is a triangle? 

G: [No] because children only recognize this (pointing the prototypical 
triangle), the regular triangle. 

T: Or if it’s (pointing to the prototypical triangle) upside-down or sideways, 
they will also understand that it’s a triangle. 

C: They’ll say that this (pointing to the scalene triangle) is a line. I have a 
question. Can the point be on the bottom? Is that Ok? 

G: It doesn’t matter. 

C: The children will say it’s a triangle in every situation (orientation). 

I: No, for the children it is definitely more difficult like this (holding the 
prototypical triangle uside-down – see Figure 4c). It’s true that it has 3 points 
but the children will say that it’s not a triangle because it’s upside-down. 

 

       

Figure 4a                     Figure 4b                                 Figure 4c 

Figures 4a, 4b, and 4c: Prototypical triangle, scalene triangle, and prototypical triangle 
turned upside-down. 

What do the practitioners know regarding the children’s concept image of 
triangles? First, they seem to agree that the prototypical triangle with a horizontal 
base will be easily recognized as a triangle. They also seem to be in agreement that 
the scalene triangle will not necessarily be part of children’s concept image of 
triangle. Questions arise when discussing the upside-down triangle. First, C is not 
herself sure that the upside-down triangle is a triangle. On the other hand, she 
believes that children will call it a triangle. T also believes that children will readily 
agree that the prototypical triangle, in any orientation, is a triangle. As research 
(Hannibal, 1999) has shown orientation to be a hindrance, the instructor at this 
point intervenes in order to correct the practitioners’ perception of children’s 
concept image. The instructor then moves on to children’s concept image of non-
triangles. 
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I: They’ll know that this (see Figure 5a) is not a triangle. But this (see Figure 
5b) … 

 

 

Figure 5a                           Figure 5b 

Figures 5a and 5b: A circle and a “triangle” with curved side. 

C: They’ll say that it’s a clown hat. 

G: Or a kite. 

L: I would also say that it’s a clown hat. 

I: But the question is, will they say that it’s a triangle or that it isn’t a 
triangle? 

H: They see the sides, that there are 3 sides. 

L: They don’t look to see if the line is straight or curved. 

H: In my opinion, they’ll say that it’s a triangle because it has 3 sides. They 
won’t notice the curve. 

I: Exactly. They won’t understand that the side of triangle must be straight. 
The truth is, with such young children, we don’t really know. We have to 
check and see what will happen. 

The above segments illustrate how the instructors elicited from the practitioners 
their knowledge regarding children’s concept image of both examples and 
nonexamples of triangles. Most important is the instructor’s acknowledgement in 
the last statement of the need for further investigation. At the end of the first 
session the instructor is more direct and assigns homework, “Ask children: Is this a 
triangle? Why?” In other words, in order to enhance practitioners’ and teachers’ 
knowledge of students, it is important to know what to ask children and what to 
listen for.  

The results of the homework assignment were discussed in the next session. 
Some of the practitioners, especially those in charge of caring for the very young 
children, carried out the assignment with their own children or grandchildren. 
Others carried out the assignment with the three-year old children in the daycare 
center.  
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 G: I have a child two years and 8 months old. I drew a picture of a regular 
triangle (meaning a prototypical triangle) and asked him, what is this? He 
said it was a clown hat. I drew a regular triangle. 

E: I have a five year old grandchild. I drew for her a triangle with a curved 
side. She said it was a triangle. 

H: I work with the infants and don’t have any small children or grandchildren 
at home.  

C: I sat with a group of [three-year old] children (in the day care center). And 
I asked them, what is this? And then I asked them, why? (See Figure 6.) (C 
shows the instructor and the other practitioners the figures she drew for this 
activity. Note that C drew five examples of triangles and one nonexample. 
Out of the five examples, only one did not have a horizontal base. Triangle 5 
was intended to be a narrow triangle but the lines merged on top.) This one 
(pointing to shape 5) was a little difficult. This one (pointing to shape 6), 
Yarden said was a triangle because it’s like the Star of David. And this one, 
(pointing to shape 2) they thought was a triangle! There were really children 
who didn’t know [that it wasn’t a triangle]! So, I showed them that you have 
to draw a straight line from point to point in order for it to be a triangle. 

 

Figure 6. Six figures C drew and used in an activity with three-year olds. 

From the reports above we see that most practitioners gained first-hand 
experience into investigating children’s concept image of triangles. At this point, 
the example space of the practitioners was still narrow. However, as the program 
continued, the practitioners were exposed to additional examples and nonexamples 
of triangles.  

Part of KCS is knowing how children’s concept image develops. This was 
discussed periodically during the professional development course with the 
practitioners. Already during the first session, the instructor pointed out that even 
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three-year old children bring to class knowledge they have gained from their 
homes and environments, “They (the children) have begun to build for themselves 
a world of images – this is [a triangle] and this isn’t [a triangle] … For example, 
children will say this (pointing to the prototypical triangle) is a triangle because it 
looks like the roof of a house.” It is also important to know that concept images 
may sometimes include misconceptions. Referring back to the scalene triangle that 
the practitioners knew would be difficult for children to accept as a triangle, the 
instructor also points out, “Children will say that this [scalene triangle] is not a 
triangle because it doesn’t resemble the roof of a house.” 

During the second session, after practitioners have become accustomed to 
discussing children’ knowledge of shapes, the instructor spends more time on why 
it is important to develop children’s concept image of triangles at such a young 
age: 

Children absorb from their surroundings, [what is a] circle [and what is a] 
triangle. So, at least they should learn correctly. You know, if you learn 
something incorrectly, afterwards it’s much more difficult to correct the 
misconception. (The practitioners nod in agreement.) Therefore, we try as 
much as possible to teach correctly. And what does that mean?... Among 
other things, [it means] to present many examples of a triangle, all sorts of 
triangles. Ok? …Think about a boy who grew up in a place which had only 
one small white dog, a poodle dog. That’s all he knows about dogs. Now 
think what would happen if he saw an amstaff dog. He for sure would not 
think it was a dog…What do children see? They see all the time nice 
triangles because in the puzzles the triangles are always nice, with equal 
sides. So, that’s what a child learns because that’s what he sees. 

The instructor ends by emphasizing that it is necessary to present and expose 
young children to many different types of triangles in order to widen children’s 
concept image of triangles. The rest of the session is spent on discussing various 
examples and nonexamples of triangles which leads into knowledge of teaching 
triangles. 

Building preschool teachers’ KCT regarding concept definitions and concept 
images of triangles 

The formation of geometrical concepts, as with many mathematical concepts, is a 
complex process in which examples play an important role (Watson & Mason, 
2005). Initially, the mental construct of a concept includes mostly visual images 
based on perceptual similarities of examples, also known as characteristic features 
(Smith, Shoben, & Rips, 1974). This initial discrimination may lead to only partial 
concept acquisition. Later on, examples serve as a basis for both perceptible and 
nonperceptible attributes, ultimately leading to a concept based on its defining 
features. Visual representations, impressions and experiences make up the initial 
concept image. Formal mathematical definitions are usually added at a later stage. 
According to the Principles and Standards for School Mathematics (NCTM, 2000), 
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young children “need to see many examples of shapes that correspond to the same 
geometrical concept as well as a variety of shapes that are nonexamples of the 
concept” (p. 98). Thus, another important aspect of KCT is knowing which 
examples and nonexamples to present to children that will promote the 
development of an appropriate concept image as well as encourage children to 
refer to the concept definition.  

In this section we describe a segment which took place with a second group of 
preschool teachers during the fifth lesson of their course. The teachers had been 
instructed to assess their children’s knowledge regarding the identification of 
examples and nonexamples of triangles and are now discussing the results. It soon 
becomes obvious that the results were largely dependent on the choice of examples 
and nonexamples the teachers had chosen to use for this assessment. (See Figure 7 
for a sample of some of these examples and nonexamples). The instructor explains: 

The results do not give us a complete picture of what the children know and 
what they are capable of knowing. We have found in our work with children 
that almost all of the children correctly identify this (pointing to an 
equilateral triangle with a horizontal base) as a triangle and only a third of the 
children will correctly identify the same triangle if it is turned upside down. 
The typical concept image of the triangle is this (pointing to an equilateral 
triangle with a horizontal base). 

In other words, in order to properly assess children’s knowledge, the teacher 
should include examples that are not necessarily part of the child’s intuitive 
concept image.  

 

Examples Nonexamples 

 

 

 

 

Figure 7. A sample of examples and nonexamples of triangles used by teachers. 

Choosing examples that are not necessarily part of the child’s concept image 
may also encourage the child to refer back to the concept definition (Tsamir, 
Tirosh, & Levenson, 2008). As the instructor claims, “it is important to work with 
many examples and nonexamples… going over the critical attributes and at the 
same time creating a world of images.” The teachers are then instructed to think 
about the figures along two dimensions: a mathematical dimension and a psycho-
didactical dimension. The mathematical dimension divides the figures into 
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examples and nonexamples of triangles according to the concept definition. The 
psycho-didactical dimension divides the figures into what is and is not intuitively 
identified as examples and nonexamples according to the child’s current concept 
image. 

Knowledge of how to choose appropriate examples and nonexamples was 
evident later on during the course as teachers discussed pentagons. In order to 
create the examples, teachers discussed the concept definition of a pentagon: 

S: I want to know if there is an exact definition for a pentagon. 

R: A closed figure with five sides. 

O: A five-sided polygon. 

S: Ok.  

I: And what about a definition for the children? 

S: For the children I would say five sides, five vertices, and closed. 

O: A closed figure… like we did before… with five sides and five vertices. 

Working together in groups, the teachers came up with the following suggestion of 
examples and nonexamples to use in various activities (see Figure 8). 

 
Dimensions Psycho-didactical 

Mathematical Intuitive Non-intuitive 

Examples  

 

    

Non-examples 

 
  

 

 

  

Figure 8. Teachers’ suggestions of examples and nonexamples of pentagons.  

It may be surprising that the teachers placed the upside down pentagon in the 
section for intuitive pentagons. After all, the teachers had previously experienced 
that upside down triangles are not necessarily part of the child’s concept image of a 
triangle. However, at this point, the teachers felt that the upside down pentagon 
may be considered intuitive. The children had already been presented with 
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triangles of various orientations and could successfully identify an upside down 
triangle as an example of a triangle. In other words, the children’s concept image 
of triangles had changed and the teachers were choosing examples based on the 
children’s current concept image of geometrical figures. On the other hand, 
triangles cannot be concave and so concave figures, such as the concave pentagon, 
may not currently be part of the child’s concept image. The teachers had gained 
knowledge of their students (KCS) and used this knowledge in their teaching 
(KCT).  

The relationship between knowledge of students and knowledge of teaching was 
observed several times during the year. Towards the end of the year, the teachers 
discussed how to help children who still had difficulties identifying various 
examples and nonexamples of geometrical figures. Referring to triangles, one 
teacher stressed the need to help children recall the concept definition. She 
suggested the following: 

E: First we need to strengthen the critical attributes. So, we start with the 
triangle they are used to (referring to the equilateral triangle) and we put it 
down in different directions and ask the child what has changed and what has 
not and to check again the critical attributes. Regarding the hostile triangles 
(referring to those which do not coincide with the child’s concept image) I 
would greatly enlarge the triangle so it would be much clearer to the child 
and ask him again to check the critical attributes, the sides and vertices. 

Notice that this teacher has identified two possible stumbling blocks for the 
children. The first is children’s difficulty with orientation. She isolates this 
difficulty using the triangle most likely to coincide with children’s concept image 
and focusing only on the changing orientation. The second is children’s difficulty 
in identifying non-intuitive triangles. Her suggestion of enlarging the triangles 
directs the child to notice the straight sides and pointed vertices of the triangle. 
Similarly, when discussing children’s difficulties in identifying concave pentagons, 
a different teacher suggests enlarging the figure and cutting it out so that children 
can feel the hidden vertex. During the next lesson, this teacher described how she 
carried out this suggestion and that the enlarged concave pentagon was indeed 
helpful.  

In this segment we see the results of explicitly introducing preschool teachers to 
the CICD theory and explicitly discussing with them the difference between the 
mathematical knowledge they as teachers need to know and applying this 
knowledge in the preschool. We can see a clear difference between the examples 
and nonexamples teachers chose for triangles in the beginning of the year to those 
they chose for pentagons in the middle of the year. Teachers are cognizant of the 
need to present a suitable definition of a pentagon for their children. They are 
aware of the tension between the concept image and concept definition and devise 
activities that will enrich the children’s concept image while strengthening their 
awareness of the concept definition. Using the combined theory as a lens we may 
say that the teachers are accessing their KCS related to concept images and concept 
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definitions in order to build their KCT related to concept images and concept 
definitions.  

Summing up and looking ahead 

In this chapter we illustrated how a theoretical framework which combined a 
theory of teachers’ knowledge with a theory of mathematical knowledge may be 
used as a tool in promoting teachers’ mathematical knowledge for teaching. “A 
crucial trait of a valuable framework of teacher knowledge is the extent to which it 
identifies that knowledge needed for student learning and understanding” (Graeber 
& Tirosh, 2008, p. 124). Other tools conceptualize teachers’ knowledge based 
solely on the work teachers do. We add that it is equally important to frame 
teachers’ knowledge based on the knowledge we wish our students to gain. 
Viewing teachers’ mathematics knowledge through two lenses, one of teachers’ 
knowledge and one of mathematical knowledge, allows us to pinpoint more 
precisely what teachers need to know for teaching mathematics. Of course teachers 
need to know which examples of triangles to present and in what order to present 
them (KCT). However, if we recognize that some examples will enhance students’ 
concept image of a triangle and others will encourage students’ use of the 
definition we may accordingly develop teachers’ mathematical knowledge for 
teaching each of these aspects.  

The theorized tool we described combined aspects of Ball and her colleagues’ 
conceptualization of teachers’ knowledge for teaching with Tall and Vinner’s 
CICD theory in order to promote preschool teachers’ knowledge for teaching 
geometry. There are several variables in the implementation of the tool. There is 
the mathematical context, the grade-level at which the teachers taught, the action 
taken with the tool, and the theories we chose to combine. Each of these variables 
represents possible directions for further development and wider use of the tool in 
enhancing teacher’s knowledge for teaching mathematics.  

Regarding the mathematical context, we found that for preschool teachers, the 
context of geometry provided a natural venue for discussing images and 
definitions. Beginning with triangles and other two-dimensional polygons, the 
teachers could readily discuss the figures they saw and drew and began to 
understand the need for concept definitions. They also came to acknowledge that 
not every concept definition may be adapted for the young children in preschool. 
This came up when discussing circles and the concept image and concept 
definition of a circle. It was decided that for the circle, a child’s concept image may 
currently be enough. These discussions carried on as the teachers discussed three-
dimensional solids such as pyramids, spheres, and cylinders. Although this book 
specifically focuses on the context of geometry, we believe that the generality of 
the CICD theory allows it to be applied to building teacher’s knowledge of 
additional mathematical contexts. In the preschool, for example, we used the 
combined framework for building teachers’ knowledge of equivalent sets  
(Tirosh, Tsamir, Levenson, & Tabach, 2011). As with geometry, we used the 
combined theory to build teachers’ TMK of the concept image of equivalent sets 
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and differentiated between this knowledge and KCT regarding this concept image. 
The same was done for the concept definition. If the use of this tool is to be 
expanded to other preschool mathematical contexts (such as patterns and 
measurement), then perhaps prior research will be necessary in order to first 
investigate children’s concept image and concept definition in these contexts. 

Regarding the grade-level at which the teachers’ taught, this chapter illustrated 
promoting knowledge for teaching children ages three till six. We believe that the 
combined theory has potential to be used as a tool for promoting teachers’ 
knowledge for teaching in other grades as well. In both elementary and secondary 
schools, studies have shown that tension exists between students’ concept images 
and concept definitions within various mathematical contexts (Bingolbali & 
Monaghan, 2008; Gray, Pinto, Pitta, & Tall, 1999; Even & Tirosh, 1995; Schwarz 
& Hershkowitz, 1999; Levenson, Tsamir, & Tirosh, 2007; Vinner & Dreyfus, 
1989). Perhaps at the high school level, teachers are more cognizant of the 
necessity for definitions than preschool teachers are. On the other hand, they may 
pay less attention to concept images. This issue will need to be addressed by 
perhaps placing extra emphasis on these cells during professional development.   

Another issue that arises from pondering the use of the tool in professional 
development is the degree of explicitness when presenting the tool to teachers. 
Upon reflection, the four dimensions of teachers’ knowledge were not made as 
explicit to the teachers and practitioners as was the concept image-concept 
definition theory. We believe that it is important to make both theories equally 
explicit to teachers. We also believe that it is important to first build teachers’ 
TMK and GMK and then build on this knowledge when developing KCS and 
KCT. This issue is being addressed in our current courses where the four 
dimensions of teachers’ knowledge are explicitly presented and discussed.  

Choosing which theories to combine is a significant issue which needs to be 
addressed. Regarding our goals for professional development, it is too simplistic to 
say that we aimed to enhance teachers’ knowledge. As the previous chapter  
indicates, conceptualizing mathematical knowledge for teaching is complex. Our 
choice of breaking down Shulman’s (1986) notion of SMK into TMK and GMK 
arose from the necessity to not only enhance teachers’ knowledge of geometry but 
to connect this specific knowledge to the larger issue of knowing mathematics in 
general. Choosing to use Ball and her colleagues’ notions of KCS and KCT also 
arose from our necessity to use a finer grain tool than provided by Shulman’s 
(1986) often used notion of PCK. In retrospect, we found that these choices were 
well suited for conceptualizing the knowledge needed for teaching geometrical 
concepts in preschool and that it is important to pay attention to each of the four 
domains of knowledge. Familiarizing preschool teachers with the concept image 
concept definition theory may enlighten teachers to the tension which may exist 
between the concept image and concept definition and inform their instruction in 
ways that will promote children’s advancement along the van Hiele levels of 
thinking.   

The first chapter in this part of the book was quite theoretical in that it presented 
background, position papers, theories, and research regarding preschool teachers’ 
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knowledge for teaching geometry. The second chapter illustrated how theory may 
be put into practice. In this last chapter we immerse ourselves in the practice of 
professional development by focusing on the tasks that we used in our professional 
development course. 
 

 



CHAPTER 9 

TASKS IN THE PROFESSIONAL DEVELOPMENT OF 
PRESCHOOL TEACHERS 

In Part Two of this book, we discussed at length different aspects of tasks that 
ought to be considered when designing and implementing geometrical tasks with 
children. Many of those aspects may be applied to tasks that are intended to be 
implemented with both prospective and practicing preschool teachers. In addition 
to those issues raised previously, when considering tasks for teachers, one may also 
consider the purposes for specifically having teachers engage in tasks. Watson and 
Sullivan (2008) listed four purposes: 

Purpose 1. To inform them about the range and purpose of possible 
classroom tasks. 

Purpose 2. To provide opportunities to learn about mathematics. 

Purpose 3. To provide insight into the nature of mathematical activity. 

Purpose 4. To stimulate and inform teachers’ theorising about students’ 
learning.  (p. 110) 

In their chapter on tasks for teachers, Watson and Sullivan (2008) go on to discuss 
in depth different types of tasks that may be used with teachers, as well as the 
affordances and constraints of each. Tasks may also be examined in light of 
different theories such as the combined-theories framework we outlined and 
illustrated in the previous two chapters. 

It is not the intention of this chapter to review at this point additional theories 
related to tasks and teachers. Instead, in this chapter, we present six geometry-
related tasks that we used in our professional development courses for preschool 
teachers.1 Some of these tasks were mentioned or related to in different sections 
throughout this book. Yet, in general, the tasks were not presented in their entirety. 
In this chapter, we gather together the different tasks as well as present some 
additional tasks in order to offer a practical perspective. Thus, for each task, we 
present, in a succinct matter, the aims of the task, as well as actual handouts or 
activity sheets and directions for use. 

                                                      
1 Research related to professional development for kindergarten teachers was supported by the Israel 
Science Foundation, Grant Noo. 654/10. 
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Task 1: Drawing examples and nonexamples 

Aims:  

1. To investigate teachers’ concept image of examples and nonexamples of 
a specific geometrical concept. 

2. To introduce the notions of concept image and example space to 
teachers. 

 

Handouts: 

Only a blank sheet is necessary. 

Instructions: 

The instructor hands out a blank sheet of paper and says, “Draw a triangle.” 
After making sure that each teacher draws one triangle the instructor should 
then say, “Now, draw another triangle.” After each teacher draws a second 
figure, the instructor should say once more, “Now, draw another triangle.” 
The instructor then requests the teachers to turn over the sheet of paper and 
gives the following instruction, “Draw a figure which is not a triangle.” After 
each teacher draws a figure, the instructor should say once more, “Now, draw 
another figure which is not a triangle.” After each teacher draws a second 
figure, the instructor should say, “Now, draw another figure which is not a 
triangle.” 

Note: The name of any two-dimensional figure may be used in the above task in 
order to investigate and then discuss teachers’ concept image of examples and 
nonexamples of that concept.  

Task two: Hierarchical relationships between figures 

Aims:  

To investigate teachers’ knowledge of the hierarchical relationship between 
quadrilaterals, rectangles, and squares.  

Handouts  (See Appendix A – Task two) 

Instructions: 

Each teacher is given a copy of the handout. The instructor says, “Look at 
each of the figures on the first handout. Is the figure a quadrilateral? A 
rectangle? A square? None of the above? On the second handout place a 
check mark if the name of the column is appropriate for the figure. Place an 
X if it is not appropriate.” 

Note: This task may be used either to investigate teachers’ knowledge before 
discussing with them the hierarchical relationship between quadrilaterals, 



TASKS IN THE PROFESSIONAL DEVELOPMENT 

121 

rectangles, and squares or it may be used to summarize a lesson which discussed 
these relationships.  

Task 3: Sorting figures  

Aims:  

1. To raise awareness among teachers to the variety of examples and 
nonexamples which may be presented to children. 

2. To raise teachers’ awareness of the psycho-didactical dimension as well 
as the mathematical dimension of geometrical figures and to offer 
teachers a way to categorize the vast amount of examples and 
nonexamples along these dimensions. 

Handout with instructions (See Appendix B): 

Note: This task may be implemented after discussing with teachers the difference 
between visual and attribute reasoning or as a prelude to that discussion. It may 
also be used as a base for discussing how to choose which examples and 
nonexamples to present to the children at different points in their learning. After 
implementing this task with teachers for the first time, it may then be used in order 
to help teachers consider the examples and nonexamples which they may present 
for other two-dimensional as well as three-dimensional geometric figures. 

Task 4: Responding to children 

Aims:  

1. To investigate how teachers would respond to children’s correct and 
incorrect identifications of examples and nonexamples of different figures. 
2. To investigate how teachers would respond to children’s explanations 
which accompany correct and incorrect identifications of different figures. 
3. To spark a discussion regarding the difference between explanations which 
are based on visual reasoning and explanations which are based on attributes. 
4. To spark a discussion of how teachers may assess children’s geometrical 
reasoning. 

Handout with instructions: (See Appendix C) 

Note: This task has several variables which the instructor should consider. First, it 
is highly dependent on the figures presented on the handout. In the above handout 
we chose one intuitive example of a pentagon (the first figure) and one non-
intuitive example (the concave pentagon). Regarding the nonexamples presented in 
this particular handout, each illustrates a breach of one critical attribute. The 
second important variable relates to the children’s explanations given as examples 
on the handout. On this handout there are explanations based on visual reasoning 
(it looks like a pentagon) and those based on critical attributes. Even when a child 



CHAPTER 9 

122 

bases an explanation on a critical attribute, it may be either wrong (claiming that 
the concave pentagon has four points) or insufficient (claiming that the pentagon 
has five lines). 

Task 5: Knowledge of children’s ways of thinking 

Aims: 

1. To investigate teachers’ knowledge of cylinders. 
2. To investigate teachers’ knowledge of children’s ability to identify 
cylinders. 
3. To investigate teachers’ knowledge of possible errors that children make 
when identifying cylinders. 

Handout with instructions written (see Appendix D) 

Note: As with the previous tasks, the instructor may vary the examples and 
nonexamples presented on the handout. 

Task 6: Describing three-dimensional geometric figures 

Aims: 

1. To investigate three-dimensional geometrical figures 
2. To identify the critical attributes of three-dimensional geometrical figures. 
3. To bring to light the relationships between two and three-dimensional 
figures. 

Instructions:  

The instructor places a variety of three-dimensional geometrical figures on a 
table such as cylinders of various heights and diameters, cones of various 
heights and diameters, spheres, pyramids, cubes, prisms, etc. The teachers are 
encouraged to not only look at the figures but to pick them up, feel them, and 
experiment with their movement. The instructor then gives each teacher the 
handout. 

Handout: 

Below you will find a bank of words. Use these words to describe each of the 
figures on the table. Describe what you see as well as what you feel. 

Word bank: 

Vertex, edge, face, height, base, circle, triangle, pentagon, square, rectangle, 
unfold, surface, rolls, flat, curved, cross-section, cylinder, prism, sphere, 
pyramid, cuboids.  

Note: Because this task deals with solids, it is important for the teachers to feel the 
difference between the figures and not just observe them from a distance. For 
example, cones and cylinders feel different even when your eyes are shut. You can 
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see that a cone has one circular base while the cylinder has two circular bases. You 
can feel that a cone has one vertex because you can feel the point. You can feel that 
the cylinder does not have any points. You can give a nudge to the cylinder and 
then observe how it can roll back and forth. When you push the sphere it may roll 
in all directions. In addition, the word bank focuses the teachers on word usage, 
providing an opportunity to discuss the differences between every-day meanings 
and mathematical meanings of the same word.   

SUMMARY  

The tasks described above may be used to both investigate as well as promote 
preschool teachers’ knowledge of geometry. In essence, throughout professional 
development we continuously do both. We assess what the teachers know and then 
build on this knowledge. As noted above, tasks in professional development serve 
various purposes (Watson & Sullivan, 2008). The tasks we presented here, as well 
as many of the tasks presented throughout the book, first and foremost, provide 
opportunities for the teachers to learn geometry. Knowledge of geometry is always 
at the heart of a task. In addition, tasks may also serve as the basis for discussing 
children’s knowledge and theories related to children’s geometrical development. 
Finally, some of the tasks implemented with teachers, may be adapted for 
implementation with children. Many similarities exist between the tasks discussed 
in Parts One and Two and the tasks discussed in Part Three. Thus, implementing 
the tasks above with teachers may offer them ideas for tasks which they can then 
implement in their own preschool classes. 
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APPENDIX A  

Task 2 – Handout A 
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Task 2 – Handout B 

Each of the figures presented in Handout A are numbered 1 through 18. Place a 
check mark  if the name of the column is appropriate for the figure. Place an X if 
it is not appropriate. 
 

 Quadrilateral Rectangle Square Other 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

15     

16     

17     

18     
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APPENDIX B – HANDOUT FOR TASK 3 

Below are many different figures. Sort the figures into examples and nonexamples 
of triangles. Then sort the examples into those which preschool children would 
readily identify as triangles and those which they children may have difficulty 
identifying as triangles. Now sort the nonexamples into those figure which 
preschool children would readily identify as not being triangles and those which 
the children may have difficulty identifying as not being triangles. Copy your four 
groups of figures onto the space provided. After you have sorted all of the figures 
below, add additional figures to each category. 
 Figures to be sorted: 
 

 

 

 

 

 

 

Sort the above figures into the following four categories and then add some 
figures of your own to each category. 

 
 

Triangles Examples Nonexamples 

Easily identified by 
children 

  

Children have difficulty 
identifying these figures 
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APPENDIX C – HANDOUT FOR TASK 4 

Danny is a child at the end of his kindergarten year. This page presents 
questions that were posed to Danny, as well as Danny’s responses to those 
questions. Fill in the blank spaces left for the kindergarten teacher’s comments. 
 

 

The question 
that was 
asked to 
Danny 

Danny’s 
response 

Comments (Was 
Danny correct)? 

Danny’s 
explanation 

Comments 
(Would you 
accept Danny’s 
explanations?) 

Is this a 
pentagon? 
 
 

Yes 

 
Because it 
has five 
lines. 

 

Is this a 
pentagon? 
 
 

No 

 

Because it’s 
not closed. 

 

Is this a 
pentagon? 
 
 Yes. 

 

Because it 
looks like a 
pentagon. 

 

Is this a 
pentagon? 
 
 No. 

 

Because it 
has four 
points. 
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APPENDIX C – TASK 5 

The figure Is it a 
cylinder? Why? 

Will kindergarten children 
correctly identify this figure as an 

example or a nonexample of a 
cylinder? 

Will children be 
able explain their 
identifications? 

     

     

     

     

 

    

             

    

 

 
 



EPILOGUE 

 
This book has been about the odyssey, the intellectual wandering and eventful 
journey, of teaching geometry to preschool children. It began with a preliminary 
discussion of theories and research related to developing geometrical concepts and 
reasoning among young children, moved on to the tasks which may be used in this 
endeavor, and ended with the teachers and the knowledge and preparation they 
need for teaching geometry in preschool. We call this an odyssey because as one 
wanders through the book, one finds many events which call upon the reader to 
linger a bit longer, to contemplate a particular example, illustration, or situation. 
What would you do or what have you done in similar situations? How may a 
certain theory or task be implemented in your preschool classroom or in your 
professional development program or in your research study?  

A proper intellectual journey also gives rise to many dilemmas. In the first part 
of this book, we studied preschool children’s development of geometrical concepts, 
placing great emphasis on the examples and nonexamples presented to children. 
Yet, some questions remain unanswered. Should we first present to children only 
examples, intuitive and non-intuitive, and only later present nonexamples? Perhaps 
we should first present intuitive examples and intuitive nonexamples and then, later 
on, present non-intuitive examples and non-intuitive nonexamples? Is there a 
hierarchy within the group of non-intuitive examples and within the group of non-
intuitive nonexamples? In other words, even though many figures may be 
considered non-intuitive examples of a certain shape, are some a little easier to 
identify than others, and if so, what makes it so? Regarding specific shapes, should 
squares be presented as examples of quadrilaterals or examples of rectangles? 
Perhaps, as with circles, we should reinforce children’s concept image of squares 
without relating to the relationships between squares, rectangles, and 
quadrilaterals.  

In the second part of this book we focused on geometrical tasks to be 
implemented with children. Not all tasks are suitable for all children. Which tasks 
are more suitable for three-year olds and which may be implemented with five-year 
olds? Which tasks may be tailored for children with special needs? Taking into 
consideration the limited fine motor skills of young children, should we encourage 
children to draw shapes when it is more than likely that the shapes will not consist 
of straight lines and pointy vertices? In the second part we also saw an example of 
how children’s engagement in geometrical tasks may promote monitoring 
behaviors. If this is the case we may ask ourselves, can promoting monitoring 
behaviors, and perhaps other control mechanisms essential for problem solving, be 
worked intentionally into the design of geometrical tasks for preschool children? In 
general, how can geometrical tasks be designed and implemented in order to 
promote other mathematical processes, such as problem solving, communication, 
and reasoning? 

In the third part of this book we discussed professional development that aims to 
increase preschool teachers’ knowledge for teaching geometry. Not all preschool 
practitioners and teachers have the same educational background. The question 
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remains as to how professional development programs may be tailored to meet the 
different needs of different teachers. Another question that arose from this part of 
the book was related to the tools used in professional development. In our 
programs, we used theories and tasks as tools for promoting knowledge. However, 
other tools might also be considered. Sherin and Han (2004) investigated the use of 
video-clubs in promoting middle-school mathematics teachers’ pedagogical 
content knowledge related to students’ ways of thinking. Can such a tool be used 
with preschool teachers? Currently, we are investigating the use of video feedback 
as a tool for promoting preschool teachers’ knowledge to teach geometry. In one of 
our professional development programs, preschool teachers are taping themselves 
in action as they engage children in geometrical tasks. How might such an 
intervention promote teachers’ knowledge of children’s difficulties? How might 
such an intervention affect teachers’ knowledge of appropriate tasks?  

The questions mentioned above are important as they represent what is still 
unknown, what requires further investigation. In addition, as with any journey, we 
also consider the paths not taken. For example, one issue not discussed in this book 
was how the child’s home environment may play an active role in the development 
of geometrical concepts and reasoning. In some cultures, children stay home and 
do not begin any schooling until the age of six or seven. But, even in countries 
where children enter daycare at a very young age, parents and caregivers may have 
a significant role to play in the education of young children.   

Affect is another issue which was not addressed in this book. Affective aspects 
of mathematics education include beliefs, attitudes, values, and emotions. These 
issues relate to both teachers and their young students. In a recent study we 
investigated kindergarten children’s self-efficacy beliefs regarding their ability to 
complete geometrical tasks (Tsamir, Tirosh, Levenson, Tabach, & Barkai, 2011). 
Preliminary results suggested that kindergarten children believe greatly in their 
ability to identify some geometrical shapes. However, children’s high self-efficacy 
does not necessarily correlate with their knowledge. Currently, we are investigating 
preschool teachers’ self-efficacy beliefs regarding their ability to complete 
geometrical tasks as well as their self-efficacy beliefs regarding their ability to 
teach geometry in preschool. 

This book focused on the development of geometric concepts and reasoning 
among young children. Although geometry is an important strand, it is not the only 
strand to be considered in children’s mathematical development. How might 
children’s development of geometric reasoning be related to the development of 
other mathematics concepts such as numbers, patterns, and measurement?  

As a final note we would like to add that, for us, this journey has not ended. If 
we are to improve mathematics education for young children, then additional 
research is needed, research which takes into consideration both the children and 
their teachers. We are encouraged by the recent call from policy and position 
papers to improve preschool mathematics education. We are encouraged by the 
research which is currently being undertaken by fellow mathematics education 
researchers. We hope that this book has been of value to preschool teachers, 
preschool teacher educators, and preschool mathematics education researchers. We 
also hope that this book will serve as an impetus for further research. 
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